10.在極坐標系(0≤θ≤2π)中,曲線ρsinθ=1與曲線ρ=2cosθ的交點的極坐標為($\sqrt{2}$,$\frac{π}{4}$).

分析 聯(lián)立$\left\{\begin{array}{l}{ρsinθ=1}\\{ρ=2cosθ}\end{array}\right.$,由0≤θ≤2π,能求出曲線ρsinθ=1與曲線ρ=2cosθ的交點的極坐標.

解答 解:聯(lián)立$\left\{\begin{array}{l}{ρsinθ=1}\\{ρ=2cosθ}\end{array}\right.$,
由0≤θ≤2π,得$ρ=\sqrt{2},θ=\frac{π}{4}$,
∴曲線ρsinθ=1與曲線ρ=2cosθ的交點的極坐標為($\sqrt{2}$,$\frac{π}{4}$).
故答案為:($\sqrt{2}$,$\frac{π}{4}$).

點評 本題考查曲線交點的極坐標的求法,是基礎(chǔ)題,解題時要認真審題,注意直角坐標方程、極坐標方程互化公式的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在股票買賣過程中,經(jīng)常用兩種曲線來描述價格變化情況:一種是即時價格曲線y=f(x),另一種是平均價格曲線y=g(x),如f(2)=3表示股票開始買賣后2小時的即時價格為3元;g(2)=3表示2小時的平均價格為3元,下面給出了四個圖象,實線表示y=f(x),虛線表示y=g(x),其中可能正確的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知向量$\overrightarrow{a}$=(3,4),若λ$\overrightarrow{a}$=(3λ,2μ)(λ,μ∈R),且|λ$\overrightarrow{a}$|=5,則λ+μ=(  )
A.3B.-3C.±3D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.定義平面點集R2={x,y)|x∈R,y∈R丨,對于集合M⊆R2,若對?P0∈M,?r>0,使得{P∈R2||PP0|<r}⊆M,則稱集合從為“開集”.給出下列命題:
①集合{x,y)|(x-1)2+(y-3)2<1}是開集;
②集合{x,y)|x≥0,y>0}是開集;
③開集在全集R2上的補集仍然是開集;
④兩個開集的并集是開集.
其中你認為正確的所有命題的序號是①④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)Sn 是數(shù)列{an}的前 n 項和,若 a1=1,an=Sn-1,(n≥2),則an=$\left\{\begin{array}{l}{1,n=1}\\{{2}^{n-2},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知△ABC中,角A,B,C的對邊分別為a,b,c,ccosA=$\frac{4}$且△ABC的面積S≥2.
(1)求A的取值范圍;
(2)求函數(shù)f(x)=cos2A+$\sqrt{3}$sin2($\frac{π}{2}$+$\frac{A}{2}$)-$\frac{\sqrt{3}}{2}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=ax,g(x)=lnx,(a∈R)
(1)當a=1時,求函數(shù)y=$\frac{g(x)}{f(x)}$在點(1,0)處的切線方程;
(2)若在[1,+∞)上不等式xf(x-1)≥g(x)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.等比數(shù)列{an}的前n項和為Sn,已知S1,2S2,3S3成等差數(shù)列,則{an}的公比為( 。
A.2B.3C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=cos2x+2sin2x+2sinx.
(Ⅰ)將函數(shù)f(2x)的圖象向右平移$\frac{π}{6}$個單位得到函數(shù)g(x)的圖象,若x∈[-$\frac{π}{12}$,$\frac{π}{12}$],求函數(shù)g(x)的值域;
(Ⅱ)已知a,b,c分別為△ABC中角A,B,C的對邊,且滿足f(A)=$\sqrt{3}$+1,A∈(0,$\frac{π}{2}$),a=2$\sqrt{3}$,b=2,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案