20.已知tan(α+$\frac{π}{4}$)=$\frac{1}{2}$,且α∈(-$\frac{π}{2}$,0),則$\frac{{2{{sin}^2}α+sin2α}}{{cos(α-\frac{π}{4})}}$=( 。
A.$-\frac{{3\sqrt{5}}}{10}$B.$-\frac{{2\sqrt{5}}}{5}$C.$\frac{{2\sqrt{5}}}{5}$D.$\frac{{3\sqrt{10}}}{10}$

分析 由條件利用兩角和的正切公式求得tanα的值,再利用同角三角函數(shù)的基本關(guān)系,求得$\frac{{2{{sin}^2}α+sin2α}}{{cos(α-\frac{π}{4})}}$的值.

解答 解:∵tan(α+$\frac{π}{4}$)=$\frac{tanα+1}{1-tanα}$=$\frac{1}{2}$,則tanα=-$\frac{1}{3}$,
∵tanα=$\frac{sinα}{cosα}$,sin2α+cos2α=1,α∈(-$\frac{π}{2}$,0),
可得 sinα=-$\frac{\sqrt{10}}{10}$.
∴$\frac{{2{{sin}^2}α+sin2α}}{{cos(α-\frac{π}{4})}}$=$\frac{2sinα(sinα+cosα)}{cos(\frac{π}{4}-α)}$=$\frac{4sinα(sinα+cosα)}{\sqrt{2}(sinα+cosα)}$=2$\sqrt{2}$sinα=2$\sqrt{2}$×(-$\frac{\sqrt{10}}{10}$)=-$\frac{2\sqrt{5}}{5}$.
故選:B.

點(diǎn)評(píng) 本題主要考查兩角和的正切公式的應(yīng)用,同角三角函數(shù)的基本關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.某三棱錐的三視圖如圖所示,則該三棱錐的表面積為(  )
A.$4\sqrt{3}+8+2\sqrt{19}$B.$4\sqrt{3}+8+4\sqrt{19}$C.$8\sqrt{3}+8+4\sqrt{19}$D.$8\sqrt{3}+8+2\sqrt{19}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知A,B是球O的球面上的兩點(diǎn),∠AOB=$\frac{π}{2}$,C為該球球面上的動(dòng)點(diǎn),若三棱錐O-ABC體積的最大值為3,則球的體積為24π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=x|x-a|的定義域?yàn)镈,其中a為常數(shù);
(1)若D=R,且f(x)是奇函數(shù),求a的值;
(2)若a≤-1,D=[-1,0],函數(shù)f(x)的最小值是g(a),求g(a)的最大值;
(3)若a>0,在[0,3]上存在n個(gè)點(diǎn)xi(i=1,2,…,n,n≥3),滿足x1=0,xn=3,x1<x2<…<xn,使|f(x1)-f(x2)|+|f(x2)-f(x3)|+…+|f(xn-1)-f(xn)|=$\frac{13}{2}$,求實(shí)數(shù)a的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知全集U={x|x≤5},集合A={x|-3<x<4},B={x|-5≤x≤3},則(∁UA)∩B=( 。
A.{x|-5≤x≤-3}B.{x|4<x<5,或x≤-3}C.{x|-5<x<-3}D.{x|-5<x<5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若存在兩個(gè)正實(shí)數(shù)x,y,使得等式3x+a(2y-4ex)(lny-lnx)=0成立,其中e為自然對(duì)數(shù)的底數(shù),則實(shí)數(shù)a的取值范圍是$({-∞,0})∪[{\frac{3}{2e},+∞})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=$\frac{2{x}^{2}-1}{{x}^{2}+2}$,則函數(shù)f(x)的值域是( 。
A.[-$\frac{1}{2}$,1]B.[-$\frac{1}{2}$,2]C.[-$\frac{1}{2}$,2)D.(-$\frac{1}{2}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知四棱錐P-ABCD中,底面ABCD是菱形,PA=PD,∠BAD=60°,E是AD的中點(diǎn),點(diǎn)Q在側(cè)棱PC上.
(I)求證:AD⊥平面PBE;
(II)若Q是PC的中點(diǎn),求證PA∥平面BDQ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.(1)計(jì)算化簡(jiǎn)求值:($\frac{8}{27}$)${\;}^{-\frac{1}{3}}$+log2(2-3×$\frac{1}{64}$)+($\sqrt{2}$-1)ln1+2lg$\sqrt{50}$-lg5+2${\;}^{lo{g}_{2}5}$.
(2)已知10a=2,b=lg3,試用a,b表示log630.

查看答案和解析>>

同步練習(xí)冊(cè)答案