分析 (1)由二項式(x2+$\frac{1}{{2\sqrt{x}}}$)n展開式中前三項的二項系數(shù)和列出方程求出n的值;
(2)根據(jù)二項式展開式的通項公式即可求出結(jié)果.
解答 解:(1)由二項式(x2+$\frac{1}{{2\sqrt{x}}}$)n展開式中前三項的二項系數(shù)和是56,
即$C_n^0+C_n^1+C_n^2=56$,
∴1+n+$\frac{1}{2}$n(n-1)=56,
化簡得n2+n-110=0,
解得n=10或n=-11(舍去),
n的值是10;…(6分)
(2)由二項式(x2+$\frac{1}{{2\sqrt{x}}}$)10展開式的第七項為
${T_7}={T_{6+1}}=C_{10}^6{({x^2})^4}{(\frac{1}{{2\sqrt{x}}})^6}=\frac{105}{32}{x^5}$.…(12分)
點評 本題考查了二項式展開式的通項公式與應(yīng)用問題,是基礎(chǔ)題目.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x與y正相關(guān),x與z負(fù)相關(guān) | B. | x與y正相關(guān),x與z正相關(guān) | ||
C. | x與y負(fù)相關(guān),x與z正相關(guān) | D. | x與y負(fù)相關(guān),x與z負(fù)相關(guān) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | 2 | C. | ±1 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 24 cm | B. | 21 cm | C. | (24+4$\sqrt{2}$)cm2 | D. | (20+4$\sqrt{2}$)cm2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2,3),1 | B. | (2,-3),3 | C. | (-2,-3),$\sqrt{2}$ | D. | (2,-3),$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com