12.在四邊形ABCD中,$\overrightarrow{AC}$=(2,3),$\overrightarrow{BD}$=(6,-4),則該四邊形的面積為( 。
A.2$\sqrt{13}$B.13C.$\sqrt{13}$D.26

分析 運(yùn)用向量數(shù)量積的坐標(biāo)表示和向量垂直的條件:數(shù)量積為0,求得向量的模,由四邊形的面積公式$\frac{1}{2}$|$\overrightarrow{AC}$|•|$\overrightarrow{BD}$|,計(jì)算即可得到所求.

解答 解:由$\overrightarrow{AC}$=(2,3),$\overrightarrow{BD}$=(6,-4),
可得$\overrightarrow{AC}$•$\overrightarrow{BD}$=2×6+3×(-4)=0,
即AC⊥BD,
又|$\overrightarrow{AC}$|=$\sqrt{4+9}$=$\sqrt{13}$,|$\overrightarrow{BD}$|=$\sqrt{36+16}$=2$\sqrt{13}$,
則該四邊形的面積為$\frac{1}{2}$|$\overrightarrow{AC}$|•|$\overrightarrow{BD}$|=$\frac{1}{2}$×$\sqrt{13}$×2$\sqrt{13}$=13.
故選:B.

點(diǎn)評(píng) 本題考查向量數(shù)量積的坐標(biāo)表示,以及向量模的求法,向量垂直的條件,考查四邊形面積的求法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.$\frac{{sin(π-α)cos(2π-α)tan(-α+\frac{3}{2}π)}}{cot(-α-π)sin(-π+α)}$=cosα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在長方體ABCD-A1B1C1D1中,B1D與平面A1BC1交于H點(diǎn),E是DD1的中點(diǎn),$\overrightarrow{BF}=3\overrightarrow{FD}$.
(1)求證:EF∥平面A1BC1
(2)證明:H為三角形A1BC1的重心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)實(shí)數(shù)x,y滿足$\left\{{\begin{array}{l}{y≤2x+2}\\{x+y-2≥0}\\{x≤2}\end{array}}\right.$,則$\frac{x+y-1}{x+3}$的取值范圍是$[\frac{1}{5},\frac{7}{5}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知α為第三象限角,且f(α)=$\frac{sin(π-α)cos(2π-α)tan(-α+π)}{sin(π+α)tan(2π-α)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)y=f(x)的圖象為如圖所示的折線,則${∫}_{-1}^{1}$[(x+2)f(x)]dx=( 。
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知復(fù)數(shù)z=1-i(i為虛數(shù)單位),且$\frac{1+ai}{z}$+1是純虛數(shù),則實(shí)數(shù)a的值為(  )
A.-1B.-3C.3D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,若a1=1,an+1=3Sn(n≥1),則a5等于( 。
A.3•43B.3•44C.44D.45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若直線a與平面α不平行,則下列結(jié)論成立的是( 。
A.平面α內(nèi)任意直線都與直線a異面B.平面α內(nèi)不存在與直線a平行的直線
C.平面α內(nèi)的直線都與直線a相交D.直線a與平面α一定有公共點(diǎn)

查看答案和解析>>

同步練習(xí)冊(cè)答案