14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x∈(-∞,0]}\\{{x}^{2}+2ax+1,x∈(0,+∞)}\end{array}\right.$,若函數(shù)g(x)=f(x)+2x-a有三個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.(0,+∞)B.(-∞,-1)C.(-∞,-3)D.(0,-3)

分析 由題意可得需使指數(shù)函數(shù)部分與x軸有一個(gè)交點(diǎn),拋物線部分與x軸有兩個(gè)交點(diǎn),判斷x≤0,與x>0交點(diǎn)的情況,列出關(guān)于a的不等式,解之可得答案.

解答 解:g(x)=f(x)+2x-a=$\left\{\begin{array}{l}{{2}^{x}+2x-a,x≤0}\\{{x}^{2}+(2a+2)x+1-a,x>0}\end{array}\right.$,函數(shù)g(x)=f(x)+2x-a有三個(gè)零點(diǎn),
可知:函數(shù)圖象的左半部分為單調(diào)遞增指數(shù)函數(shù)的部分,
函數(shù)圖象的右半部分為開(kāi)口向上的拋物線,對(duì)稱(chēng)軸為x=-a-1,最多兩個(gè)零點(diǎn),
如上圖,要滿足題意,函數(shù)y=2x+2x是增函數(shù),x≤0一定與x相交,過(guò)(0,1),g(x)=2x+2x-a,與x軸相交,1-a≥0,可得a≤1.
還需保證x>0時(shí),拋物線與x軸由兩個(gè)交點(diǎn),可得:-a-1>0,△=4(a+1)2-4(1-a)>0,
解得a<-3,綜合可得a<-3,
故選:C.

點(diǎn)評(píng) 本題考查根的存在性及根的個(gè)數(shù)的判斷,數(shù)形結(jié)合是解決問(wèn)題的關(guān)鍵,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知拋物線y2=4x的焦點(diǎn)為點(diǎn)F,過(guò)焦點(diǎn)F的直線交該拋物線于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),若△AOB的面積為$\sqrt{6}$,則|AB|=( 。
A.6B.8C.12D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知函數(shù)f(x)是定義在[-3,0)∪(0,3]上的奇函數(shù),當(dāng)x∈(0,3]時(shí),f(x)的圖象如圖所示,那么滿足不等式f(x)≥2x-1 的x的取值范圍是[-3,-2]∪[0,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.《張丘建算經(jīng)》是我國(guó)南北朝時(shí)期的一部重要數(shù)學(xué)著作,書(shū)中系統(tǒng)的介紹了等差數(shù)列,同類(lèi)結(jié)果在三百多年后的印度才首次出現(xiàn).書(shū)中有這樣一個(gè)問(wèn)題,大意為:某女子善于織布,后一天比前一天織得快,而且每天增加的數(shù)量相同,已知第一天織布4尺,半個(gè)月(按15天計(jì)算)總共織布81尺,問(wèn)每天增加的數(shù)量為多少尺?該問(wèn)題的答案為$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知圓心在x軸上,半徑為$\sqrt{5}$的圓位于y軸右側(cè),且截直線x+2y=0所得弦的長(zhǎng)為2,則圓的方程為(x-2$\sqrt{5}$)2+y2=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知函數(shù)f(x)=$\frac{1}{2}$x2-tcosx.若其導(dǎo)函數(shù)f′(x)在R上單調(diào)遞增,則實(shí)數(shù)t的取值范圍為( 。
A.[-1,-$\frac{1}{3}$]B.[-$\frac{1}{3}$,$\frac{1}{3}$]C.[-1,1]D.[-1,$\frac{1}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,在底面是菱形的四棱柱ABCD-A1B1C1D1中,∠ABC=60°,AA1=AC=2,A1B=A1D=2$\sqrt{2}$,點(diǎn)E在A1D上,且E為A1D的中點(diǎn)
(Ⅰ)求證:AA1⊥平面ABCD;
(Ⅱ)求三棱錐D-ACE的體積VD-ACE

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)向量$\overrightarrow a,\overrightarrow b$滿足$|{\overrightarrow a+\overrightarrow b}|=4,\overrightarrow a•\overrightarrow b=1$,則$|{\overrightarrow a-\overrightarrow b}|$=( 。
A.2B.$2\sqrt{3}$C.3D.$2\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖,在棱長(zhǎng)為a的正方體ABCD-A1B1C1D1中,P為A1D1的中點(diǎn),Q為A1B1上任意一點(diǎn),E,F(xiàn)為CD上任意兩點(diǎn),且EF的長(zhǎng)為定值,則下面的四個(gè)值中不為定值的是( 。
A.點(diǎn)Q到平面PEF的距離B.直線PE與平面QEF所成的角
C.三棱錐P-QEF的體積D.二面角P-EF-Q的大小

查看答案和解析>>

同步練習(xí)冊(cè)答案