16.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0),過(guò)點(diǎn)F2且斜率為$\frac{2b}{a}$的直線l交直線2bx+ay=0于M,若M在以線段F1F2為直徑的圓上,則橢圓的離心率為$\frac{1}{2}$.

分析 由已知得出過(guò)點(diǎn)F2且斜率為$\frac{2b}{a}$的直線l的方程,與2bx+ay=0聯(lián)立即可解得交點(diǎn)M的坐標(biāo),代入以線段F1F2為直徑的圓的方程,得到a,b的關(guān)系,再由a,b,c的關(guān)系,可得a,c的關(guān)系,運(yùn)用離心率公式即可得出離心率e.

解答 解:設(shè)過(guò)點(diǎn)F2且斜率為$\frac{2b}{a}$的直線l的方程為y=$\frac{2b}{a}$(x-c),
與2bx+ay=0聯(lián)立,
可得交點(diǎn)M($\frac{c}{2}$,-$\frac{bc}{a}$),
∵點(diǎn)M在以線段F1F2為直徑的圓:x2+y2=c2上,
∴($\frac{c}{2}$)2+(-$\frac{bc}{a}$)2=c2
∴b=$\frac{\sqrt{3}}{2}$a,
∴c=$\sqrt{{a}^{2}-^{2}}$=$\frac{1}{2}$a,
∴e=$\frac{c}{a}$=$\frac{1}{2}$.
故答案為:$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查橢圓的幾何性質(zhì),主要是離心率的求法,考查學(xué)生的計(jì)算能力,熟練掌握橢圓的離心率公式、直線的點(diǎn)斜式、圓的方程是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,設(shè)ox,oy是平面內(nèi)相交成θ°的兩條數(shù)軸,$\overrightarrow{e_1}$,$\overrightarrow{e_2}$分別是與ox,oy正方向同向的單位向量,若向量$\overrightarrow{op}=x\overrightarrow{e_1}+y\overrightarrow{e_2}$,則把有序?qū)崝?shù)對(duì)(x,y)叫做向量$\overrightarrow{op}$的θ°坐標(biāo),記作$\overrightarrow{op}$(θ°)=(x,y);當(dāng)θ=90°時(shí),稱(x,y)為$\overrightarrow{op}$的正交坐標(biāo).
(1)若$\overrightarrow{op}$(45°)=(-2,2$\sqrt{2}$),求$\overrightarrow{|{op}|}$;
(2)若$\overrightarrow{oM}$的正交坐標(biāo)為(2,$\sqrt{3}$),求$\overrightarrow{oM}$(60°)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知集合A={0,1,2},A∩B={0,2},則B集合可能是( 。
A.{0,1}B.{1,2}C.{0,2,3}D.{0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.$(1+2{x^2}){(x-\frac{1}{x})^8}$的二項(xiàng)展開(kāi)式中常數(shù)項(xiàng)是-42.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,E,F(xiàn)分別是AC,AB的中點(diǎn),
(1)若∠C=60°,b=1,c=3,求△ABC的面積;   
(2)若3AB=2AC,$\frac{BE}{CF}$<t恒成立,求t的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若集合A={-2,-1,0,1,2},集合B={x|x(x+3)<0},則A∩B等于( 。
A.{-1,0,1,2}B.{-2,-1}C.{1,2}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.下列命題中正確的是( 。
A.若α>β,則sinα>sinβ
B.命題:“?x>1,x2>1”的否定是“?x≤1,x2≤1”
C.已知函數(shù)f(x)=x3+ax2+bx+c,若f(x)在區(qū)間(-1,0)上單調(diào)遞減,則a2+b2的取值范圍為$[{\frac{9}{5},+∞})$
D.“若xy=0,則x=0或y=0”的逆否命題為“若x≠0或y≠0,則xy≠0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在直角坐標(biāo)系xOy中,圓M的參數(shù)方程為$\left\{\begin{array}{l}{x=1+2cost}\\{y=-2+2sint}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸的正半軸為極軸,建立極坐標(biāo)系,直線l的極坐標(biāo)方程為$\sqrt{2}$ρsin(θ-$\frac{π}{4}$)=m,(m∈R),若直線l與圓M相交于A,B兩點(diǎn),△MAB的面積為2,則m值為( 。
A.-1或3B.1或5C.-1或-5D.2或6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)$f(x)=\frac{1}{2}a{x^2}-({2a+1})x+2lnx$.
(1)若函數(shù)y=f(x)在x=1和x=3處的切線互相平行,求a的值;
(2)若a>0,求函數(shù)y=f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案