已知數(shù)列的前n項(xiàng)和為,
(1)證明:數(shù)列是等差數(shù)列,并求;
(2)設(shè),求證:
(1)證明略,,(2)詳見(jiàn)解析.
解析試題分析:(1)利用代入得關(guān)于的遞推公式,然后變形為,利用等差數(shù)列的定義即可說(shuō)明;
(2)由已知可得,利用裂項(xiàng)求和法求,然后放縮一下即可.
試題解析:(1)證明:由知,當(dāng)時(shí):,
即,∴,對(duì)成立.
又是首項(xiàng)為1,公差為1的等差數(shù)列.
,∴.6分
(2),8分
∴
=.12分
考點(diǎn):(1)等差數(shù)列的定義;(2)裂項(xiàng)求和法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)Sn表示數(shù)列的前n項(xiàng)和.
(1)若為等差數(shù)列, 推導(dǎo)Sn的計(jì)算公式;
(2)若, 且對(duì)所有正整數(shù)n, 有. 判斷是否為等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列滿(mǎn)足().
(1)若數(shù)列是等差數(shù)列,求它的首項(xiàng)和公差;
(2)證明:數(shù)列不可能是等比數(shù)列;
(3)若,(),試求實(shí)數(shù)和的值,使得數(shù)列為等比數(shù)列;并求此時(shí)數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知:公差大于零的等差數(shù)列的前n項(xiàng)和為Sn,且滿(mǎn)足
求數(shù)列的通項(xiàng)公式;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等差數(shù)列{an}的前n項(xiàng)和為Sn,S7=49,a4和a8的等差中項(xiàng)為2.
(1)求an及Sn;
(2)證明:當(dāng)n≥2時(shí),有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在數(shù)列{an}中,,,
(1)求數(shù)列的通項(xiàng)公式
(2)設(shè)(),記數(shù)列的前k項(xiàng)和為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知是公差不為零的等差數(shù)列,,且是和的等比中項(xiàng),求:
(1)數(shù)列的通項(xiàng)公式;
(2).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
成等差數(shù)列的三個(gè)正數(shù)的和等于15,并且這三個(gè)數(shù)分別加上2、5、13后成為等比數(shù)列中的、、.
(1)求數(shù)列的通項(xiàng)公式;
(2)數(shù)列的前n項(xiàng)和為,求證:數(shù)列是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)無(wú)窮數(shù)列{an}滿(mǎn)足:?n∈Ν?,an<an+1,an∈N?.記bn=aan,cn=aan+1(n∈N*).
(1)若bn=3n(n∈N*),求證:a1=2,并求c1的值;
(2)若{cn}是公差為1的等差數(shù)列,問(wèn){an}是否為等差數(shù)列,證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com