10.“若f(x)在區(qū)間D上是凸函數(shù),則對(duì)于區(qū)間D內(nèi)的任意x1,x2,…,xn,有$\frac{1}{n}[{f({x_1})+f({x_2})++f(x_n^{\;})}]≤f(\frac{{{x_1}+{x_2}++{x_n}}}{n})$”設(shè)f(x)=sinx在(0,π)上是凸函數(shù),則在△ABC中,sinA+sinB+sinC的最大值是(  )
A.$\frac{3}{2}$B.$\frac{1}{2}$C.$\frac{{3\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

分析 運(yùn)用是凸函數(shù)的定義,可得$\frac{1}{3}$[f(A)+f(B)+f(C)]≤f($\frac{A+B+C}{3}$),計(jì)算即可得到所求最大值,及等號(hào)成立的條件.

解答 解:由f(x)=sinx在(0,π)上是凸函數(shù),
可得在△ABC中,$\frac{1}{3}$[f(A)+f(B)+f(C)]≤f($\frac{A+B+C}{3}$),
即有$\frac{1}{3}$(sinA+sinB+sinC)≤sin$\frac{π}{3}$,
即sinA+sinB+sinC≤3sin$\frac{π}{3}$=$\frac{3\sqrt{3}}{2}$.
當(dāng)且僅當(dāng)A=B=C=$\frac{π}{3}$時(shí),取得等號(hào).
則sinA+sinB+sinC的最大值是$\frac{3\sqrt{3}}{2}$.
故選:C.

點(diǎn)評(píng) 本題考查新定義的理解和運(yùn)用,同時(shí)考查三角形的內(nèi)角和定理,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知集合A={1,2,3,4,5},B={x∈Z|x≤2},則A∩B中的元素個(gè)數(shù)為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)集合A={x|(x-3)(x-1)>0},B={x|y=lg(2x-3)},則A∩B=( 。
A.$[\frac{3}{2},3)$B.(3,+∞)C.$(1,\frac{3}{2})$D.($\frac{3}{2}$,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知互不重合的直線(xiàn)l,m,互不重合的平面α,β,給出下列四個(gè)命題,錯(cuò)誤的命題是(  )
A.若l∥α,l∥β,α∩β=m,則l∥mB.若α⊥β,l⊥α,m⊥β則l⊥m
C.若α⊥β,α⊥γ,β∩γ=l,則l⊥αD.若α∥β,l∥α,則l∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f (x)=lg$\frac{10}{\sqrt{1+4{x}^{2}}-2x}$,則f (2017)+f (-2017)=( 。
A.0B.2C.20D.4034

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知復(fù)數(shù)x滿(mǎn)足x+$\frac{1}{x}$=-1,則x2013+$\frac{1}{{{x^{2013}}}}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知$\overrightarrow a=({1,2}),\overrightarrow b=({m,1})$,若$\overrightarrow a⊥\overrightarrow b$,則m=( 。
A.$-\frac{1}{2}$B.-2C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若f(x)=sin3x+acos2x在(0,π)上存在最小值,則實(shí)數(shù)a的取值范圍是( 。
A.(0,$\frac{3}{2}$)B.(0,$\frac{3}{2}$]C.[$\frac{3}{2}$,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,正三棱柱ABC-A1B1C1的所有棱長(zhǎng)均為2,D為棱BB1上一點(diǎn),E是AB的中點(diǎn).
(1)若D是BB1的中點(diǎn),證明:平面ADC1⊥平面A1EC;
(2)若平面ADC1與平面ABC的夾角為45°,求BD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案