【題目】如圖1,在矩形中,,,點、分別在線段、上,且,,現(xiàn)將沿折到的位置,連結(jié),,如圖2

1)證明:;

2)記平面與平面的交線為.若二面角,求與平面所成角的正弦值.

【答案】1)證明見解析 2

【解析】

(1)建立坐標系證明,再由線面垂直的判定定理以及線面垂直的性質(zhì)證明

(2)根據(jù)公理得到平面與平面的交線,再根據(jù)二面角定義得到二面角的平面角,建立空間直角坐標系,利用向量法求與平面所成角的正弦值.

解:(1)證明:如圖,線段交于點

中,由,,

以點A為坐標原點,建立直角坐標系,則,

,從而有,

即在圖2中有,,平面

平面

平面,

2)延長,交于點,連接

根據(jù)公理得到直線即為,再根據(jù)二面角定義得到.

在平面內(nèi)過點作底面垂線,為原點,分別以、、及所作為軸、軸、軸建立空間直角坐標

,,,

,,,

設平面的一個法向量為,

,得.

與平面所成角的正弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率,且橢圓過點.

(1)求橢圓的標準方程;

(2)設直線交于,兩點,點上,是坐標原點,若,判斷四邊形的面積是否為定值?若為定值,求出該定值;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公園有個池塘,其形狀為直角△ABC,,AB的長為2百米,BC的長為1百米.

(1)若準備養(yǎng)一批供游客觀賞的魚,分別在AB、BC、CA上取點D、E、F,如圖(1),使得,,在△DEF內(nèi)喂食,求當△DEF的面積取最大值時EF的長;

(2)若準備建造一個荷塘,分別在AB、BC、CA上取點D、E、F,如圖(2),建造△DEF連廊(不考慮寬度)供游客休憩,且使△DEF為正三角形,記,求△DEF邊長的最小值及此時的值.(精確到1米和0.1度)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知袋中裝有紅球,黑球共7個,若從中任取兩個小球(每個球被取到的可能性相同),其中恰有一個紅球的概率為.

1)求袋中紅球的個數(shù);

2)若袋中紅球比黑球少,從袋中任取三個球,求三個球中恰有一個紅球的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“共享單車”的出現(xiàn),為我們提供了一種新型的交通方式.某機構(gòu)為了調(diào)查人們對此種交通方式的滿意度,從交通擁堵不嚴重的城市和交通擁堵嚴重的城市分別隨機調(diào)查了20個用戶,得到了一個用戶滿意度評分的樣本,并繪制出莖葉圖如圖:

1)根據(jù)莖葉圖,比較兩城市滿意度評分的平均值的大。ú灰笥嬎憔唧w值,給出結(jié)論即可);

2)若得分不低于85分,則認為該用戶對此種交通方式“認可”,否則認為該用戶對此種交通方式“不認可”,請根據(jù)此樣本完成此列聯(lián)表,并據(jù)此樣本分析是否有的把握認為城市擁堵與認可共享單車有關;

合計

認可

不認可

合計

3)若此樣本中的城市和城市各抽取1人,則在此2人中恰有一人認可的條件下,此人來自城市的概率是多少?

(參考公式:

0.10

0.05

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

極坐標系的極點為直角坐標系的原點,極軸為軸的正半軸,兩種坐標系中的長度單位相同,已知曲線的極坐標方程為.

(1)求的直角坐標方程;

(2)直線為參數(shù))與曲線交于兩點,與軸交于,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】:實數(shù)滿足,其中;

:實數(shù)滿足.

Ⅰ)若,為真,求實數(shù)的取值范圍;

Ⅱ)若的必要不充分條件,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】經(jīng)觀測,某公路段在某時段內(nèi)的車流量(千輛/小時)與汽車的平均速度(千米/小時)之間有函數(shù)關系:

1)在該時段內(nèi),當汽車的平均速度為多少時車流量最大?最大車流量為多少?(精確到0.01)

2)為保證在該時段內(nèi)車流量至少為10千輛/小時,則汽車的平均速度應控制在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知梯形中,,,,四邊形為矩形,,平面平面

Ⅰ)求證:平面

Ⅱ)求平面與平面所成銳二面角的余弦值;

Ⅲ)在線段上是否存在點,使得直線與平面所成角的正弦值為,若存在,求出線段的長;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案