【題目】“共享單車”的出現(xiàn),為我們提供了一種新型的交通方式.某機構為了調查人們對此種交通方式的滿意度,從交通擁堵不嚴重的城市和交通擁堵嚴重的城市分別隨機調查了20個用戶,得到了一個用戶滿意度評分的樣本,并繪制出莖葉圖如圖:
(1)根據(jù)莖葉圖,比較兩城市滿意度評分的平均值的大。ú灰笥嬎憔唧w值,給出結論即可);
(2)若得分不低于85分,則認為該用戶對此種交通方式“認可”,否則認為該用戶對此種交通方式“不認可”,請根據(jù)此樣本完成此列聯(lián)表,并據(jù)此樣本分析是否有的把握認為城市擁堵與認可共享單車有關;
合計 | |||
認可 | |||
不認可 | |||
合計 |
(3)若此樣本中的城市和城市各抽取1人,則在此2人中恰有一人認可的條件下,此人來自城市的概率是多少?
(參考公式:)
0.10 | 0.05 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線C:(a>0,b>0)的漸近線方程為y=±x,右頂點為(1,0).
(1)求雙曲線C的方程;
(2)已知直線y=x+m與雙曲線C交于不同的兩點A,B,且線段AB的中點為,當x0≠0時,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐中,為梯形,,,,,,.
(1)在線段上有一個動點,滿足且平面,求實數(shù)的值;
(2)已知與的交點為,若,且平面,求二面角平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在矩形中,,,點、分別在線段、上,且,,現(xiàn)將沿折到的位置,連結,,如圖2
(1)證明:;
(2)記平面與平面的交線為.若二面角為,求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓的離心率為,分別是橢圓的左右焦點,點是橢圓上任意一點,且.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)在直線上是否存在點Q,使以為直徑的圓經(jīng)過坐標原點O,若存在,求出線段的長的最小值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知U=R且A={x|a2x2-5ax-6<0},B{x||x-2|≥1}.
(1)若a=1,求(UA)B;
(2)求不等式a2x2-5ax-6<0(a∈R)的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com