【題目】已知△ABC的外接圓半徑為1,角A,B,C的對邊分別為a,b,c,且2acos A=ccos B+bcos C.
(Ⅰ)求A;
(Ⅱ)若b2+c2=7,求△ABC的面積.

【答案】解:(Ⅰ)因為2acos A=ccos B+bcos C,則由正弦定理得:2sin Acos A=sin Ccos B+sin Bcos C, 所以2sin Acos A=sin(B+C)=sin A,
又0<A<π,
所以sin A≠0,從而2cos A=1,cos A= ,
故A= ;
(Ⅱ)由A= 知sin A= ,而△ABC的外接圓半徑為1,
故由正弦定理可得a=2sin A= ,
再由余弦定理a2=b2+c2﹣2bccos A,
可得bc=b2+c2﹣a2=7﹣3=4,
∴SABC= bcsin A=
【解析】(Ⅰ)根據(jù)正弦定理和以及兩角和正弦公式即可得到cos A= ,問題得以解決,(Ⅱ)根據(jù)正弦定理和余弦定理可得bc的值,即可求出三角形的面積.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左、右焦點分別為 ,短軸兩個端點為 ,且四邊形 是邊長為2的正方形.

(1)求橢圓的方程;
(2)若 、 分別是橢圓長軸的左、右端點,動點 滿足 ,連接 ,交橢圓于點 .證明: 為定值.
(3)在(2)的條件下,試問 軸上是否存異于點 的定點 ,使得以 為直徑的圓恒過直線 、 的交點,若存在,求出點 的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx,g(x)= +bx(a≠0)
(Ⅰ)若a=﹣2時,函數(shù)h(x)=f(x)﹣g(x)在其定義域內(nèi)是增函數(shù),求b的取值范圍;
(Ⅱ)在(Ⅰ)的結(jié)論下,設(shè)φ(x)=e2x+bex , x∈[0,ln2],求函數(shù)φ(x)的最小值;
(Ⅲ)設(shè)函數(shù)f(x)的圖象C1與函數(shù)g(x)的圖象C2交于點P、Q,過線段PQ的中點R作x軸的垂線分別交C1、C2于點M、N,問是否存在點R,使C1在M處的切線與C2在N處的切線平行?若存在,求出R的橫坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知菱形 ABCD 中,對角線 AC 與 BD 相交于一點 O,∠A=60°,將△BDC 沿著 BD 折起得△BDC',連結(jié) AC'.

(Ⅰ)求證:平面 AOC'⊥平面 ABD;
(Ⅱ)若點 C'在平面 ABD 上的投影恰好是△ABD 的重心,求直線 CD 與底面 ADC'所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an},{bn}滿足a1=2,b1=4,且 2bn=an+an+1 , an+12=bnbn+1
(Ⅰ)求 a 2 , a3 , a4 及b2 , b3 , b4;
(Ⅱ)猜想{an},{bn} 的通項公式,并證明你的結(jié)論;
(Ⅲ)證明:對所有的 n∈N* , sin

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查中小學(xué)課外使用互聯(lián)網(wǎng)的情況,教育部向華東、華北、華南和西部地區(qū)60所中小學(xué)發(fā)出問卷份, 名學(xué)生參加了問卷調(diào)查,并根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖(如圖).

(1)要從這名中小學(xué)中用分層抽樣的方法抽取名中小學(xué)生進(jìn)一步調(diào)查,則在(小時)時間段內(nèi)應(yīng)抽出的人數(shù)是多少?

(2)若希望的中小學(xué)生每天使用互聯(lián)網(wǎng)時間不少于(小時),請估計的值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax(a>0,a≠1)在區(qū)間[﹣1,2]上的最大值為8,最小值為m.若函數(shù)g(x)=(3﹣10m) 是單調(diào)增函數(shù),則a=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,BC=a,AC=b,且a,b是方程的兩根,2cos(A+B)=1

(1)求∠C的度數(shù);

(2)求AB的長;

(3)求△ABC的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正三棱柱ABC﹣A1B1C1中,點D是BC的中點.

(1)求證:A1C∥平面AB1D;
(2)設(shè)M為棱CC1的點,且滿足BM⊥B1D,求證:平面AB1D⊥平面ABM.

查看答案和解析>>

同步練習(xí)冊答案