12.如圖,在棱長均相等的正四棱錐P-ABCD最終,O為底面正方形的重心,M,N分別為側(cè)棱PA,PB的中點,有下列結(jié)論:
①PC∥平面OMN;
②平面PCD∥平面OMN;
③OM⊥PA;
④直線PD與直線MN所成角的大小為90°.
其中正確結(jié)論的序號是①②③.(寫出所有正確結(jié)論的序號)

分析 對4個命題分別進行判斷,即可得出結(jié)論.

解答 解:如圖,連接AC,易得PC∥OM,所以PC∥平面OMN,結(jié)論①正確.
同理PD∥ON,所以平面PCD∥平面OMN,結(jié)論②正確.
由于四棱錐的棱長均相等,所以AB2+BC2=PA2+PC2=AC2,所以PC⊥PA,又PC∥OM,所以O(shè)M⊥PA,結(jié)論③正確.
由于M,N分別為側(cè)棱PA,PB的中點,所以MN∥AB,又四邊形ABCD為正方形,所以AB∥CD,所以直線PD與直線MN所成的角即為直線PD與直線CD所成的角,為∠PDC,知三角形PDC為等邊三角形,所以∠PDC=60°,故④錯誤.
故答案為:①②③.

點評 本題考查線面平行、面面平行,考查線線角,考查學生分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

7.已知p:“?k∈R,直線y=kx+1與橢圓x2+$\frac{y^2}{a}$=1有兩個不同的公共點”;q:“?x0∈R,不等式4x0-2x0-a≤0成立”;若“p且q”是假命題,“p或q”是真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.在平面直角坐標系xOy中,已知圓O:x2+y2=4和點P(-1,0),過點P的直線l交圓O于A、B兩點
(1)若|AB|=2$\sqrt{3}$,求直線l的方程;
(2)設(shè)弦AB的中點為M,求點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知數(shù)列{an}滿足a1=2,點(an,an+1)在直線y=3x+2上,數(shù)列{bn}滿足b1=2,$\frac{_{n+1}}{{a}_{n+1}}$=$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$
(1)求b2的值;
(2)求證數(shù)列{an+1}為等比數(shù)列,并求出數(shù)列{an}的通項公式;
(3)求證:2-$\frac{1}{2•{3}^{n-1}}$≤(1+$\frac{1}{_{1}}$)(1+$\frac{1}{_{2}}$)…(1+$\frac{1}{_{n}}$)<$\frac{33}{16}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.曲線y=|x-2|-3與x軸圍成的圖形的面積是9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.用與球心距離為1的平面去截球所得的截面面積為π,則球的表面積為( 。
A.B.C.D.$\frac{8}{3}π$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=loga(1-x)+loga(x+3)(0<a<1).
(1)求函數(shù)f(x)的定義域;
(2)求方程f(x)=0的解;
(3)若函數(shù)f(x)的最小值為-4,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.秦九韶算法是南宋時期數(shù)學家秦九韶提出的一種多項式簡化算法,即使在現(xiàn)代,它依然是利用計算機解決多項式問題的最優(yōu)算法,即使在現(xiàn)代,它依然是利用計算機解決多項式問題的最優(yōu)算法,其算法的程序框圖如圖所示,若輸入的a0,a1,a2,…,an分別為0,1,2,…,n,若n=5,根據(jù)該算法計算當x=2時多項式的值,則輸出的結(jié)果為( 。
A.248B.258C.268D.278

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知函數(shù)f(x)=e2x-ax2+bx-1,其中a,b∈R,e為自然對數(shù)的底數(shù),若f(1)=0,f′(x)是f(x)的導函數(shù),函數(shù)f′(x)在區(qū)間(0,1)內(nèi)有兩個零點,則a的取值范圍是(  )
A.(e2-3,e2+1)B.(e2-3,+∞)C.(-∞,2e2+2)D.(2e2-6,2e2+2)

查看答案和解析>>

同步練習冊答案