11.求函數(shù)y=2cosx(sinx+cosx)的圖象的對(duì)稱(chēng)中心和對(duì)稱(chēng)軸方程.

分析 利用單項(xiàng)式乘多項(xiàng)式展開(kāi),再由降冪公式降冪,結(jié)合輔助角公式化積,則函數(shù)y=2cosx(sinx+cosx)的圖象的對(duì)稱(chēng)中心和對(duì)稱(chēng)軸方程可求.

解答 解:y=2cosx(sinx+cosx)=2sinxcosx+2cos2x
=sin2x+cos2x+1=$\sqrt{2}sin(2x+\frac{π}{4})+1$.
由$2x+\frac{π}{4}=kπ$,得$x=\frac{kπ}{2}-\frac{π}{8}$,k∈Z.
∴函數(shù)y=2cosx(sinx+cosx)的圖象的對(duì)稱(chēng)中心($\frac{kπ}{2}-\frac{π}{8},1$)(k∈Z);
由$2x+\frac{π}{4}=\frac{π}{2}+kπ$,得x=$\frac{π}{8}+\frac{kπ}{2}$,k∈Z.
∴函數(shù)y=2cosx(sinx+cosx)的圖象的對(duì)稱(chēng)軸方程為x=$\frac{π}{8}+\frac{kπ}{2}$,k∈Z.

點(diǎn)評(píng) 本題考查三角函數(shù)中的恒等變換應(yīng)用,考查y=Asin(ωx+φ)型函數(shù)的圖象和性質(zhì),是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.某校為了了解學(xué)生對(duì)消防知識(shí)的了解情況,從高一年級(jí)和高二年級(jí)各選取100名同學(xué)進(jìn)行消防知識(shí)競(jìng)賽.圖(1)和圖(2)分別是對(duì)高一年級(jí)和高二年級(jí)參加競(jìng)賽的學(xué)生成績(jī)按[40,50),[50,60),[60,70),[70,80]分組,得到的頻率分布直方圖.
(1)請(qǐng)估算參加這次知識(shí)競(jìng)賽的高一年級(jí)學(xué)生成績(jī)的眾數(shù)和高二年級(jí)學(xué)生成績(jī)的平均值;
(2)完成下面2×2列聯(lián)表,并回答:有多大的把握可以認(rèn)為“學(xué)生所在的年級(jí)與消防常識(shí)的了解存在相關(guān)性”?
成績(jī)小于60分人數(shù)成績(jī)不小于60分人數(shù)合計(jì)
高一
高二
合計(jì)
附:臨界值表及參考公式:K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,n=a+b+c+d.
P(K2≥x00.150.100.050.0250.0100.0050.001
x02.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知在直角坐標(biāo)系xOy中,曲線C的方程是(x-2)2+(y-l)2=4,直線l經(jīng)過(guò)點(diǎn)P(3,$\sqrt{3}$),傾斜角為$\frac{π}{6}$,以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(Ⅰ)寫(xiě)出曲線C的極坐標(biāo)方程和直線l的參數(shù)方程;
(Ⅱ)設(shè)直線l與曲線C相交于A,B兩點(diǎn),求|OA|•|OB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.過(guò)點(diǎn)P(-3,0)且傾斜角為30°的直線和曲線ρ2cos2θ=4相交于A、B兩點(diǎn).求線段AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=log${\;}_{\frac{1}{3}}$($\frac{1-ax}{x-1}$)滿(mǎn)足f(-2)=1,其中a為實(shí)常數(shù).
(1)求a的值,并判定函數(shù)f(x)的奇偶性;
(2)若不等式f(x)>($\frac{1}{2}$)x+t在x∈[2,3]上恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在平面直角坐標(biāo)系xOy中,已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=tcos\frac{8π}{3}}\\{y=-4+tsin\frac{8π}{3}}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:ρ2-3ρ-4=0(ρ≥0).
(1)寫(xiě)出直線l的普通方程與曲線C的直角坐標(biāo)系方程;
(2)設(shè)直線l與曲線C相交于A,B兩點(diǎn),求∠AOB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,在△ABC中,∠BAC的平分線交BC于D,交△ABC的外接圓于E,延長(zhǎng)AC交△DCE的外接圓于F
(1)求證:BD=DF;
(2)若AD=3,AE=5,求EF的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.圓C,直線l的極坐標(biāo)方程分別為ρ=4sinθ,ρcos(θ-$\frac{π}{4}}$)=2$\sqrt{2}$.
(1)求圓C與直線l的直角坐標(biāo)方程,并求出直線l與圓C的交點(diǎn)的直角坐標(biāo);
(2)設(shè)點(diǎn)P為圓C的圓心,點(diǎn)Q為直線l被圓C截得的線段的中點(diǎn).已知直線PQ的參數(shù)方程為$\left\{\begin{array}{l}x={t^5}+m\\ y=\frac{4}{n}{t^5}-2\end{array}$(t為參數(shù),t∈R),求實(shí)數(shù)m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知曲線C1:x2+y2-2x-4y+m=0.
(1)若曲線C1是一個(gè)圓,且點(diǎn)P(1,1)在圓C1外,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)m=4時(shí),曲線C1關(guān)于直線x+y=0對(duì)稱(chēng)的曲線為C2.設(shè)P為平面上的點(diǎn),滿(mǎn)足:存在過(guò)P點(diǎn)的無(wú)窮多對(duì)互相垂直的直線L1,L2,它們分別與曲線C1和曲線C2相交,且直線L1被曲線C1截得的弦長(zhǎng)與直線L2被曲線C2截得的弦長(zhǎng)總相等.
(1)求所有滿(mǎn)足條件的點(diǎn)P的坐標(biāo);
(2)若直線L1被曲線C1截得的弦為MN,直線L2被曲線C2截得的弦為RS,設(shè)△PMR與△PNS的面積分別為S1與S2,試探究S1•S2是否為定值?若是,求出該定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案