14.橢圓4x2+9y2=144內(nèi)有一點(diǎn)P(3,2),則以P為中點(diǎn)的弦所在直線的斜率為( 。
A.$-\frac{2}{3}$B.$-\frac{3}{2}$C.$-\frac{4}{9}$D.$-\frac{9}{4}$

分析 利用中點(diǎn)坐標(biāo)公式、斜率計(jì)算公式、“點(diǎn)差法”即可得出.

解答 解:設(shè)以點(diǎn)P為中點(diǎn)的弦所在直線與橢圓相交于點(diǎn)A(x1,y1),B(x2,y2),斜率為k.
則$4{{x}_{1}}^{2}+9{{y}_{1}}^{2}=144$,$4{{x}_{2}}^{2}+9{{y}_{2}}^{2}=144$,兩式相減得4(x1+x2)(x1-x2)+9(y1+y2)(y1-y2)=0,
又x1+x2=6,y1+y2=4,$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=k,
代入解得k=-$\frac{4}{9}×\frac{6}{4}$=$-\frac{2}{3}$.
故選:A.

點(diǎn)評(píng) 熟練掌握中點(diǎn)坐標(biāo)公式、斜率計(jì)算公式、“點(diǎn)差法”是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若tanα=3tan$\frac{π}{5}$,則$\frac{cos(α-\frac{3π}{10})}{sin(α-\frac{π}{5})}$=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)F1,F(xiàn)2是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{^{2}}$=1(a>b>0),的左右焦點(diǎn),離心率為$\frac{\sqrt{2}}{2}$,M為橢圓上的動(dòng)點(diǎn),|MF1|的最大值為1$+\sqrt{2}$.
(Ⅰ)求橢圓C的方程.
(Ⅱ)設(shè)A,B是橢圓上位于x軸上方的兩點(diǎn),且直線AF1與直線BF2平行,AF2與BF1交于點(diǎn)P,求證:|PF1|+|PF2|是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)=g(x)+x2,對(duì)于任意x∈R總有f(-x)+f(x)=0,且g(-1)=1,則g(1)=( 。
A.-1B.1C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)拋物線E:y2=2px(p>0)上的點(diǎn)M(x0,4)到焦點(diǎn)F的距離|MF|=$\frac{5}{4}$x0
(Ⅰ)求拋物線E的方程;
(Ⅱ)如圖,直線l:y=k(x+2)與拋物線E交于A,B兩點(diǎn),點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)是C,求證:直線BC恒過一定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.設(shè)F1,F(xiàn)2是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{2a}=1({a>0})$的兩個(gè)焦點(diǎn),點(diǎn)M在雙曲線上,且滿足$\overrightarrow{M{F_1}}•\overrightarrow{M{F_2}}=0$,$|{\overrightarrow{M{F_1}}}|•|{\overrightarrow{M{F_2}}}|=4$,則a的值等于1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知函數(shù)$f(x)=cos2xcosθ-sin2xcos({\frac{π}{2}-θ})({|θ|<\frac{π}{2}})$在$({-\frac{3π}{8},-\frac{π}{6}})$上單調(diào)遞增,則$f({\frac{π}{16}})$的最大值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{a•{2}^{x}+b+1}{{2}^{x}+1}$是定義域在R上的奇函數(shù),且f(2)=$\frac{6}{5}$.
(1)求實(shí)數(shù)a、b的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并用定義證明;
(3)解不等式:f(log${\;}_{\frac{1}{2}}$(2x-2)]+f[log2(1-$\frac{1}{2}$x)]≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知集合A={0,2,4,6},B={x∈N|2x<33},則集合A∩B的子集個(gè)數(shù)為( 。
A.8B.7C.6D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案