1.已知$f(α)=\frac{{sin(α-\frac{π}{2})cos(\frac{3π}{2}+α)tan(π-α)}}{tan(-α-π)sin(-α-π)},(-\frac{π}{2}<α<\frac{π}{2})$
(Ⅰ)化簡(jiǎn)f(α).
(Ⅱ)若$sin(α-\frac{π}{6})=-\frac{1}{5}$,求$f(α+\frac{π}{3})$的值.

分析 (Ⅰ)利用誘導(dǎo)公式進(jìn)行化簡(jiǎn);
(Ⅱ)利用誘導(dǎo)公式和同角三角函數(shù)解答.

解答 解:(Ⅰ)$f(α)=\frac{{sin(α-\frac{π}{2})cos(\frac{3π}{2}+α)tan(π-α)}}{tan(-α-π)sin(-α-π)}$,
=$\frac{-cosα•(-sinα)•(-tanα)}{-tanα•sinα}$
=cosα,
即f(α)=cosα(-$\frac{π}{2}$<α<$\frac{π}{2}$);
(Ⅱ)∵$sin(α-\frac{π}{6})=-\frac{1}{5}$,
∴sin=(α-$\frac{π}{6}$)=-cos($\frac{π}{2}$+α-$\frac{π}{6}$)=-cos(α+$\frac{π}{3}$)=$\frac{1}{5}$,
∴$f(α+\frac{π}{3})$=cosα(α+$\frac{π}{3}$)=-$\frac{1}{5}$.

點(diǎn)評(píng) 本題主要考察了同角三角函數(shù)關(guān)系式和誘導(dǎo)公式的應(yīng)用,屬于基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=ex-1+a,函數(shù)g(x)═ax+lnx,α∈R.
(1)求函數(shù)y=g(x)的單調(diào)區(qū)間;
(2)若不等式f(x)≥g(x)+1在[1,+∞)上恒成立,求實(shí)數(shù)a的取值范圍;
(3)若x∈(1,+∞),求證:不等式:ex-1-2lnx>-x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖的三個(gè)圖中,上面的是一個(gè)長(zhǎng)方體截去一個(gè)角所得多面體的直觀圖,它的正視圖和側(cè)視圖在下面畫出(單位:cm).

(1)在正視圖下面,按照畫三視圖的要求畫出該多面體的俯視圖;
(2)按照給出的尺寸,求該多面體的體積和表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.若函數(shù)y=-x3+6x2-m的極大值為12,則實(shí)數(shù)m等于20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知正方體ABCD-A1B1C1D1的棱長(zhǎng)是1,則直線CB1與BD間的距離為( 。
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{2}}}{4}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.方程$\sqrt{1-{x}^{2}}$=kx+2有兩解,則實(shí)數(shù)k的取值范圍是( 。
A.(-2,-$\sqrt{3}$]∪[$\sqrt{3}$,2)B.[-2,-$\sqrt{3}$)∪($\sqrt{3}$,2]C.[-2,2]D.(-$\sqrt{3}$,$\sqrt{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若角θ滿足條件sinθcosθ<0,且cosθ-sinθ<0,則θ在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知$\sqrt{2+\frac{2}{3}}=2\sqrt{\frac{2}{3}},\sqrt{3+\frac{3}{8}}=3\sqrt{\frac{3}{8}},\sqrt{4+\frac{4}{15}}=4\sqrt{\frac{4}{15}},…$,若$\sqrt{6+\frac{a}}=6\sqrt{\frac{a}},(a,b∈R)$,則a+b=41.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知△ABC和平面上一點(diǎn)O滿足$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$,若存在實(shí)數(shù)λ使得$\overrightarrow{AB}$=λ$\overrightarrow{OA}$-$\overrightarrow{AC}$,則λ=( 。
A.-3B.$\frac{3}{4}$C.-$\frac{3}{4}$D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案