4.已知$\frac{1+i}{2-i}$=a+bi(a、b∈R,i為虛數(shù)單位),則a2+b2=( 。
A.$\frac{2}{5}$B.$\frac{\sqrt{10}}{5}$C.$\frac{1}{5}$D.1

分析 直接由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),再由復(fù)數(shù)相等的充要條件求出a,b的值,則a2+b2的答案可求.

解答 解:∵$\frac{1+i}{2-i}$=$\frac{(1+i)(2+i)}{(2-i)(2+i)}=\frac{1+3i}{5}=\frac{1}{5}+\frac{3}{5}i=a+bi$,
∴$a=\frac{1}{5}$,$b=\frac{3}{5}$.
則a2+b2=$(\frac{1}{5})^{2}+(\frac{3}{5})^{2}=\frac{2}{5}$.
故選:A.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)相等的充要條件,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)y=f(x+1)的圖象關(guān)于直線x=-1對(duì)稱,且滿足f(x)+f′(x)=2ex,若a=f(-3),b=f(lnπ),c=f(|sinx|),則a,b,c的大小關(guān)系是( 。
A.a>b>cB.b>a>cC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知命題p:x2-5x-6≤0;命題q:x2-6x+9-m2≤0,若¬p是¬q的充分不必要條件,則實(shí)數(shù)m的取值范圍是[-3,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.雙曲線$\frac{{x}^{2}}{3}$-$\frac{16{y}^{2}}{{p}^{2}}$=1(p>0)的左焦點(diǎn)在拋物線y2=2px的準(zhǔn)線上,則p=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P(x0,$\frac{5}{2}$)為雙曲線上一點(diǎn),若△PF1F2的內(nèi)切圓半徑為1且圓心G到原點(diǎn)O的距離為$\sqrt{5}$,則雙曲線方程$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{5}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{x+1≥0}\\{x+y≤1}\\{x-y≤1}\end{array}\right.$,則目標(biāo)函數(shù)z=$\frac{y-3}{x}$的取值范圍是(-∞,-3]∪[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知a>0,函數(shù)$f(x)=-2asin({2x+\frac{π}{6}})+2a+b$,當(dāng)$x∈[{0,\frac{π}{2}}]$時(shí),-5≤f(x)≤1
(1)求常數(shù)a,b的值;
(2)當(dāng)$x∈[{0,\frac{π}{4}}]$時(shí),求f(x)的最大值與最小值及相應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.為宣傳3月5日學(xué)雷鋒紀(jì)念日,成都七中在高一,高二年級(jí)中舉行學(xué)雷鋒知識(shí)競(jìng)賽,每年級(jí)出3人組成甲乙兩支代表隊(duì),首輪比賽每人一道必答題,答對(duì)則為本隊(duì)得1分,答錯(cuò)不答都得0分,已知甲隊(duì)3人每人答對(duì)的概率分別為$\frac{3}{4},\frac{2}{3},\frac{1}{2}$,乙隊(duì)每人答對(duì)的概率都是$\frac{2}{3}$.設(shè)每人回答正確與否相互之間沒有影響,用X表示甲隊(duì)總得分.
(1)求隨機(jī)變量X的分布列及其數(shù)學(xué)期望E(X);
(2)求甲隊(duì)和乙隊(duì)得分之和為4的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在二項(xiàng)式(1+x)n的展開式中,存在著系數(shù)之比為5:7的相鄰兩項(xiàng),則指數(shù)n(n∈N*)的最小值為11.

查看答案和解析>>

同步練習(xí)冊(cè)答案