9.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{x+1≥0}\\{x+y≤1}\\{x-y≤1}\end{array}\right.$,則目標(biāo)函數(shù)z=$\frac{y-3}{x}$的取值范圍是(-∞,-3]∪[1,+∞).

分析 作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,進(jìn)行求解即可.

解答 解:畫出滿足約束條件$\left\{\begin{array}{l}{x+1≥0}\\{x+y≤1}\\{x-y≤1}\end{array}\right.$的平面區(qū)域,如圖示:
,
目標(biāo)函數(shù)z=$\frac{y-3}{x}$幾何意義為區(qū)域內(nèi)的點(diǎn)與D(0,3)的斜率,
過B(-1,2)與D(0,3)時斜率最小,K≥KBD,∴K≥$\frac{2-3}{-1}$=1,
過(0,3)與(1,0)時斜率最大,
K≤$\frac{0-3}{1}$=-3,
則目標(biāo)函數(shù)z=$\frac{y-3}{x}$的取值范圍是:(-∞,-3]∪[1,+∞).
故答案為:(-∞,-3]∪[1,+∞).

點(diǎn)評 本題主要考查線性規(guī)劃和直線斜率的基本應(yīng)用,利用目標(biāo)函數(shù)的幾何意義和數(shù)形結(jié)合是解決問題的基本方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在直徑AB=4的圓上有長度為2的動弦CD,則$\overrightarrow{AC}•\overrightarrow{BD}$的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=cos2$\frac{ωx}{2}$+$\frac{\sqrt{3}}{2}$sinωx-$\frac{1}{2}$(ω>0),x∈R,若f(x)在區(qū)間(π,2π)內(nèi)沒有零點(diǎn),則ω的取值范圍是( 。
A.(0,$\frac{5}{12}$]B.(0,$\frac{5}{12}$]∪[$\frac{5}{6}$,$\frac{11}{12}$)C.(0,$\frac{5}{6}$]D.(0,$\frac{5}{12}$]∪[$\frac{5}{6}$,$\frac{11}{12}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若物體的運(yùn)動方程是s=t3+t2-1,t=3時物體的瞬時速度是( 。
A.27B.31C.39D.33

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知$\frac{1+i}{2-i}$=a+bi(a、b∈R,i為虛數(shù)單位),則a2+b2=(  )
A.$\frac{2}{5}$B.$\frac{\sqrt{10}}{5}$C.$\frac{1}{5}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)$f(x)={log_a}\frac{x+1}{x-1}(a>0,且a>0,且a≠1)$
(Ⅰ)判斷f(x)的奇偶性并證明;
(Ⅱ)若對于x∈[2,4],恒有$f(x)>{log_a}\frac{m}{(x-1)(7-x)}$成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=$\frac{a(x-b)}{(x-b)^{2}+c}$(a≠0,b∈R,c>0),g(x)=m[f(x)]2-n(mn>0),
給出下列四個命題:
①當(dāng)b=0時,函數(shù)f(x)為奇函數(shù);
②函數(shù)f(x)的圖象關(guān)于x軸上某點(diǎn)成中心對稱;
③存在實(shí)數(shù)p和q,使得p≤f(x)≤q對于任意的實(shí)數(shù)x恒成立;
④關(guān)于x的方程g(x)=0的解集可能為{-4,-2,0,3}.
則是真命題的有①②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知三棱錐A-BCD中,BC⊥CD,AB=AD=$\sqrt{2}$,BC=1,CD=$\sqrt{3}$,則該三棱錐外接球的體積為$\frac{4}{3}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.將函數(shù)f(x)=sin(2x+$\frac{π}{6}$)的圖象向右平移$\frac{π}{6}$個單位,所得的圖象對應(yīng)的解析式為( 。
A.y=sin2xB.y=cosxC.y=sin(2x+$\frac{2π}{3}$)D.y=sin(2x-$\frac{π}{6}$)

查看答案和解析>>

同步練習(xí)冊答案