12.雙曲線$\frac{{x}^{2}}{3}$-$\frac{16{y}^{2}}{{p}^{2}}$=1(p>0)的左焦點(diǎn)在拋物線y2=2px的準(zhǔn)線上,則p=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.2D.4

分析 求出雙曲線的左焦點(diǎn)坐標(biāo),代入拋物線的準(zhǔn)線方程,求出P即可.

解答 解:雙曲線$\frac{{x}^{2}}{3}$-$\frac{16{y}^{2}}{{p}^{2}}$=1(p>0)的左焦點(diǎn)(-$\sqrt{3+\frac{{p}^{2}}{16}}$,0),
雙曲線$\frac{{x}^{2}}{3}$-$\frac{16{y}^{2}}{{p}^{2}}$=1(p>0)的左焦點(diǎn)在拋物線y2=2px的準(zhǔn)線上,
可得:$\sqrt{3+\frac{{p}^{2}}{16}}=\frac{p}{2}$,解得p=4.
故選:D.

點(diǎn)評 本題考查雙曲線的簡單性質(zhì)以及拋物線的簡單性質(zhì)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{e}^{x},x≤1}\\{f(x-1),x>1}\end{array}\right.$,則f($\frac{3}{2}$)=( 。
A.$\sqrt{e}$B.$\sqrt{e^3}$C.$\root{3}{e^2}$D.$\root{3}{e}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.微信是現(xiàn)代生活中進(jìn)行信息交流的重要工具.據(jù)統(tǒng)計(jì),某公司200名員工中90%的人使用微信,其中每天使用微信時間在一小時以內(nèi)的有60人,其余的員工每天使用微信時間在一小時以上,若將員工分成青年(年齡小于40歲)和中年(年齡不小于40歲)兩個階段,那么使用微信的人中75%是青年人.若規(guī)定:每天使用微信時間在一小時以上為經(jīng)常使用微信,那么經(jīng)常使用微信的員工中都$\frac{2}{3}$是青年人.
(1)若要調(diào)查該公司使用微信的員工經(jīng)常使用微信與年齡的關(guān)系,列出并完成2×2列聯(lián)表:
青年人中年人合計(jì)
經(jīng)常使用微信8040120
不經(jīng)常使用微信55560
合計(jì)13545180
(2)由列聯(lián)表中所得數(shù)據(jù)判斷,是否有99.9%的把握認(rèn)為“經(jīng)常使用微信與年齡有關(guān)”?
(3)采用分層抽樣的方法從“經(jīng)常使用微信”的人中抽取6人,從這6人中任選2人,求選出的2人,均是青年人的概率.
附:
p(K2≥k00.050.0250.0100.0050.001
k03.8415.0246.6357.87910.828
${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=cos2$\frac{ωx}{2}$+$\frac{\sqrt{3}}{2}$sinωx-$\frac{1}{2}$(ω>0),x∈R,若f(x)在區(qū)間(π,2π)內(nèi)沒有零點(diǎn),則ω的取值范圍是( 。
A.(0,$\frac{5}{12}$]B.(0,$\frac{5}{12}$]∪[$\frac{5}{6}$,$\frac{11}{12}$)C.(0,$\frac{5}{6}$]D.(0,$\frac{5}{12}$]∪[$\frac{5}{6}$,$\frac{11}{12}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)函數(shù)f(x)=lnx-ax(a∈R).
(1)若曲線y=f(x)在點(diǎn)A(1,f(1))處的切線L的方程,并證明:除點(diǎn)A外,曲線y=f(x)都在直線L的下方;
(2)若函數(shù)h(x)=ex+f(x)在區(qū)間(1,3)上有零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若物體的運(yùn)動方程是s=t3+t2-1,t=3時物體的瞬時速度是( 。
A.27B.31C.39D.33

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知$\frac{1+i}{2-i}$=a+bi(a、b∈R,i為虛數(shù)單位),則a2+b2=( 。
A.$\frac{2}{5}$B.$\frac{\sqrt{10}}{5}$C.$\frac{1}{5}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=$\frac{a(x-b)}{(x-b)^{2}+c}$(a≠0,b∈R,c>0),g(x)=m[f(x)]2-n(mn>0),
給出下列四個命題:
①當(dāng)b=0時,函數(shù)f(x)為奇函數(shù);
②函數(shù)f(x)的圖象關(guān)于x軸上某點(diǎn)成中心對稱;
③存在實(shí)數(shù)p和q,使得p≤f(x)≤q對于任意的實(shí)數(shù)x恒成立;
④關(guān)于x的方程g(x)=0的解集可能為{-4,-2,0,3}.
則是真命題的有①②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=$\sqrt{|2x-1|+|x+1|-a}$的定義域?yàn)镽.
(Ⅰ)求實(shí)數(shù)a的取值范圍;
(Ⅱ)若a的最大值為k,且m+n=2k(m>0,n>0),求證:$\frac{1}{m}$+$\frac{4}{n}$≥3.

查看答案和解析>>

同步練習(xí)冊答案