【題目】已知函數(shù)fx)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的圖象如圖所示.

(1)求函數(shù)fx)的解析式;

(2)求函數(shù)fx)的單調(diào)增區(qū)間;

(3)若x∈[-,0],求函數(shù)fx)的值域.

【答案】(1);(2);(3).

【解析】

(1)由函數(shù)的最值求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值,可得函數(shù)的解析式;

(2)令2kπ2x2kπkz,求得x的范圍,可得函數(shù)的增區(qū)間;

(3)由x∈[,0],利用正弦函數(shù)的定義域和值域求得fx)的值域.

解:(1)由函數(shù)的圖象可得A=2,T==-,求得ω=2.

再根據(jù)五點(diǎn)法作圖可得2×+φ=,∴φ=,故fx)=2sin(2x+).

(2)令2kπ-≤2x+≤2kπ+kz,求得kπ-xkπ+,

故函數(shù)的增區(qū)間為[kπ-,kπ+],kz

(3)若x∈[-,0],則2x+∈[-,],∴sin(2x+)∈[-1,],

fx)∈[-2,1].

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是定義在R上的奇函數(shù),其中為指數(shù)函數(shù),且的圖象過定點(diǎn)

1)求函數(shù)的解析式;

2)若關(guān)于x的方程,有解,求實(shí)數(shù)a的取值范圍;

3)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為提升教師專業(yè)功底,引領(lǐng)青年教師成長(zhǎng),某市教育局舉行了全市“園丁杯”課堂教學(xué)比賽,在這次比賽中,通過采用錄像課評(píng)比的片區(qū)預(yù)賽,有共10位選手脫穎而出進(jìn)入全市決賽.決賽采用現(xiàn)場(chǎng)上課形式,從學(xué)科評(píng)委庫(kù)中采用隨機(jī)抽樣抽選代號(hào)1,2,3,…,7的7名評(píng)委,規(guī)則是:選手上完課,評(píng)委們當(dāng)初評(píng)分,并從7位評(píng)委評(píng)分中去掉一個(gè)最高分,去掉一個(gè)最低分,根據(jù)剩余5位評(píng)委的評(píng)分,算出平均分作為該選手的最終得分.記評(píng)委對(duì)某選手評(píng)分排名與該選手最終排名的差的絕對(duì)值為“評(píng)委對(duì)這位選手的分?jǐn)?shù)排名偏差”.排名規(guī)則:由高到低依次排名,如果選手分?jǐn)?shù)一樣,認(rèn)定名次并列(如:選手分?jǐn)?shù)一致排在第二,則認(rèn)為他們同屬第二名,沒有第三名,接下來(lái)分?jǐn)?shù)為第四名).七位評(píng)委評(píng)分情況如下表所示:

(1)根據(jù)最終評(píng)分表,填充如下表格:

(2)試借助評(píng)委評(píng)分分析表,根據(jù)評(píng)委對(duì)各選手的排名偏差的平方和,判斷評(píng)委4與評(píng)委5在這次活動(dòng)中誰(shuí)評(píng)判更準(zhǔn)確.

____號(hào)評(píng)委評(píng)分分析表

選手

A

B

C

D

E

F

G

H

I

J

最終排名

評(píng)分排名

排名偏差

(3)從這10位選手中任意選出3位,記其中評(píng)委4比評(píng)委5對(duì)選手排名偏差小的選手?jǐn)?shù)位,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè) ,數(shù)列滿足,,將數(shù)列的前100項(xiàng)從大到小排列得到數(shù)列,若,則k的值為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】表示中的最大值,.已知函數(shù)

(1)設(shè),求函數(shù)上零點(diǎn)的個(gè)數(shù);

(2)試探討是否存在實(shí)數(shù),使得對(duì)恒成立?若存在,的取值范圍若不存在,說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面上有兩定點(diǎn)A、B,該平面上一動(dòng)點(diǎn)P與兩定點(diǎn)AB的連線的斜率乘積等于常數(shù),則動(dòng)點(diǎn)P的軌跡可能是下面哪種曲線:①直線;②圓;③拋物線;④雙曲線;⑤橢圓_____(將所有可能的情況用序號(hào)都寫出來(lái))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)觀測(cè),某公路段在某時(shí)段內(nèi)的車流量(千輛/小時(shí))與汽車的平均速度(千米/小時(shí))之間有函數(shù)關(guān)系:

1)在該時(shí)段內(nèi),當(dāng)汽車的平均速度為多少時(shí)車流量最大?最大車流量為多少?(精確到0.01)

2)為保證在該時(shí)段內(nèi)車流量至少為10千輛/小時(shí),則汽車的平均速度應(yīng)控制在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在區(qū)間上的函數(shù)的圖象如圖所示,記為,,為頂點(diǎn)的三角形的面積為,則函數(shù)的導(dǎo)數(shù)的圖象大致是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱臺(tái)的上下底面分別是邊長(zhǎng)為2和4的正方形, = 4且 ⊥底面,點(diǎn)的中點(diǎn).

(Ⅰ)求證: ;

(Ⅱ)在邊上找一點(diǎn),使∥面,

并求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案