【題目】 ,數(shù)列滿足,,將數(shù)列的前100項從大到小排列得到數(shù)列,若,則k的值為______

【答案】

【解析】

根據(jù)遞推公式利用數(shù)學歸納法分析出的關系,然后考慮將的前項按要求排列,再根據(jù)項的序號計算出滿足的值即可.

由已知,a1a,0a1;并且函數(shù)yax單調遞減;

1>a2a1

,

a2a3a1

,且

a2a4a3a1

……

為奇數(shù)時,用數(shù)學歸納法證明,

時,成立,

時,,

時,因為,結合的單調性,

所以,所以,所以時成立,

所以為奇數(shù)時,;

為偶數(shù)時,用數(shù)學歸納法證明

時,成立,設時,,

時,因為,結合的單調性,

所以,所以,所以時成立,

所以為偶數(shù)時,

用數(shù)學歸納法證明:任意偶數(shù)項大于相鄰的奇數(shù)項即證:當為奇數(shù),,

時,符合,設時,,

時,因為,結合的單調性,

所以,所以,所以,所以時成立,

所以當為奇數(shù)時,

據(jù)此可知:,

時,若,則有,此時無解;

時,此時的下標成首項為公差為的等差數(shù)列,通項即為,

,所以,所以.

故答案為:.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】目前,學案導學模式已經(jīng)成為教學中不可或缺的一部分,為了了解學案的合理使用是否對學生的期末復習有著重要的影響某校隨機抽取200名學生,對學習成績和學案使用程度進行了調查,統(tǒng)計數(shù)據(jù)如下表所示:

善于使用學案

不善于使用學案

合計

學習成績優(yōu)秀

40

學習成績一般

30

合計

200

已知隨機抽查這200名學生中的一名學生,抽到善于使用學案的學生概率是0.6.

參考公式:,其中.

5.024

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

6.635

7.879

10.828

(I)完成列聯(lián)表(不用寫計算過程);

(Ⅱ)試運用獨立性檢驗的思想方法分析有多大的把握認為學生的學習成績與對待學案的使用態(tài)度有關?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】目前共享單車基本覆蓋饒城市區(qū),根據(jù)統(tǒng)計,市區(qū)所有人騎行過共享單車的人數(shù)已占,騎行過共享單車的人數(shù)中,有是學生(含大中專、高職及中學生),若市區(qū)人口按40萬計算,學生人數(shù)約為9.6萬.

(1)任選出一名學生,求他(她)騎行過共享單車的概率;

(2)隨著單車投放數(shù)量增加,亂停亂放成為城市管理的問題,如表是本市某組織累計投放單車數(shù)量與亂停亂放單車數(shù)量之間關系圖表:

累計投放單車數(shù)量

100000

120000

150000

200000

230000

亂停亂放單車數(shù)量

1400

1700

2300

3000

3600

計算關于的線性回歸方程(其中精確到,值保留三位有效數(shù)字),并預測當時,單車亂停亂放的數(shù)量;

(3)已知信州區(qū)、廣豐區(qū)、上饒縣、經(jīng)開區(qū)四區(qū)中,其中有兩個區(qū)的單車亂停亂放數(shù)量超過標準,在“大美上饒”活動中,檢查組隨機抽取兩個區(qū)調查單車亂停亂放數(shù)量,表示“單車亂停亂放數(shù)量超過標準的區(qū)的個數(shù)”,求的分布列和數(shù)學期望.

參考公式和數(shù)據(jù):回歸直線方程中的斜率和截距的最小二乘估計分別為

,,

,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一布袋中裝有個小球,甲,乙兩個同學輪流且不放回的抓球,每次最少抓一個球,最多抓三個球,規(guī)定:由乙先抓,且誰抓到最后一個球誰贏,那么以下推斷中正確的是( )

A. ,則乙有必贏的策略B. ,則甲有必贏的策略

C. ,則甲有必贏的策略D. ,則乙有必贏的策略

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某小區(qū)抽取50戶居民進行月用電量調查,發(fā)現(xiàn)其用電量都在50到350度之間,將用電量的數(shù)據(jù)繪制成頻率分布直方圖如下.

(1)求頻率分布直方圖中的值并估計這50戶用戶的平均用電量;

(2)若將用電量在區(qū)間內的用戶記為類用戶,標記為低用電家庭,用電量在區(qū)間內的用戶記為類用戶,標記為高用電家庭,現(xiàn)對這兩類用戶進行問卷調查,讓其對供電服務進行打分,打分情況見莖葉圖:

①從類用戶中任意抽取3戶,求恰好有2戶打分超過85分的概率;

②若打分超過85分視為滿意,沒超過85分視為不滿意,請?zhí)顚懴旅媪新?lián)表,并根據(jù)列聯(lián)表判斷是否有的把握認為“滿意度與用電量高低有關”?

滿意

不滿意

合計

類用戶

類用戶

合計

附表及公式:

0.050

0.010

0.001

3.841

6.635

10.828

, .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標坐標系中,曲線的參數(shù)方程為為參數(shù)),以直角坐標系的原點為極點,以軸的正半軸為極軸建立極坐標系,已知直線的極坐標方程為.

(1)求曲線的普通方程;

(2)若與曲線相切,且與坐標軸交于兩點,求以為直徑的圓的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的圖象如圖所示.

(1)求函數(shù)fx)的解析式;

(2)求函數(shù)fx)的單調增區(qū)間;

(3)若x∈[-,0],求函數(shù)fx)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=log4(ax2+2x+3).

(1)若f(x)定義域為R,求a的取值范圍;

(2)若f(1)=1,求f(x)的單調區(qū)間;

(3)是否存在實數(shù)a,使f(x)的最小值為0?若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列四個結論:

①命題“,”的否定是“,”;

②命題“若,則”的否定是“若,則”;

③命題“若,則”的否命題是“若,則”;

④若“是假命題,是真命題”,則命題一真一假.

其中正確結論的個數(shù)為( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

同步練習冊答案