【題目】已知函數,,
(1)求不等式的解集;
(2)若對一切,均有成立,求實數的取值范圍.
【答案】(1){x|-2<x<4}.(2)(-∞,2].
【解析】
(1)解一元二次不等式得不等式g(x)<0的解集,(2)先化簡不等式,利用變量分離法得,轉化求函數最小值,根據,利用基本不等式求最值,即得實數m的取值范圍.
解:(1)g(x)=2x2-4x-16<0,
∴(2x+4)(x-4)<0,∴-2<x<4,
∴不等式g(x)<0的解集為{x|-2<x<4}.
(2)∵f(x)=x2-2x-8.
當x>2時,f(x)≥(m+2)x-m-15恒成立,
∴x2-2x-8≥(m+2)x-m-15,
即x2-4x+7≥m(x-1).
∴對一切x>2,均有不等式成立.
而=(x-1)+-2
≥2-2=2(當x=3時等號成立).
∴實數m的取值范圍是(-∞,2].
科目:高中數學 來源: 題型:
【題目】已知關于x的二次函數f(x)=x2+(2t-1)x+1-2t.
(1)求證:對于任意t∈R,方程f(x)=1必有實數根;
(2)若<t<,求證:方程f(x)=0在區(qū)間(-1,0)及內各有一個實數根.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知以M為圓心的圓M:x2+y2-12x-14y+60=0及其上一點A(2,4).
(1)設圓N與x軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標準方程;
(2)設平行于OA的直線l與圓M相交于B,C兩點,且BC=OA,
求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】 在平行四邊形ABCD中,A(1,1),=(6,0),點M是線段AB的中點,線段CM與BD交于點P.(1) 若=(3,5),求點C的坐標;(2) 當||=||時,求點P的軌跡.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設Sn為數列{an}的前n項的和,且Sn = (an -1)(n∈N*), 數列{bn }的通項公式bn = 4n+5.
①求證:數列{an }是等比數列;
②若d∈{a1 ,a2 ,a3 ,……}∩{b1 ,b2 ,b3 ,……},則稱d為數列{an }和{bn }的公共項,按它們在原數列中的先后順序排成一個新的數列{dn },求數列{dn }的通項公式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(1)已知:“直線與圓相交”; :“有一正根和一負根”.若為真, 為真,求的取值范圍.
(2)已知橢圓: 與圓: ,雙曲線與橢圓有相同的焦點,它的兩條漸近線恰好與圓相切.求雙曲線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=x|x|+bx+c,給出下列命題:①b=0,c>0時,方程f(x)=0只有一個實數根;②c=0時,y=f(x)是奇函數;③方程f(x)=0至多有兩個實根.上述三個命題中所有正確命題的序號為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列{an}的前n項和為Sn , 且Sn=n2﹣4n﹣5
(1)求數列{an}的通項公式;
(2)設bn=|an|,數列{bn}的前n項和為Tn, 求Tn .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com