16.設(shè)x為實數(shù),命題p:?x∈R,x2+2x+1≥0,則命題p的否定是(  )
A.¬p:?x∈R,x2+2x+1<0B.¬p:?x∈R,x2+2x+1≤0
C.¬p:?x∈R,x2+2x+1<0D.¬p:?x∈R,x2+2x+1≤0

分析 利用全稱命題的否定是特稱命題,寫出結(jié)果即可.

解答 解:因為全稱命題的否定是特稱命題,
所以命題p:?x∈R,x2+2x+1≥0的否定:?x∈R,x2+2x+1<0.
故選:A.

點評 本題考查命題的否定,全稱命題與特稱命題的否定關(guān)系.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

6.兩平行直線3x-4y-3=0和6x-8y+5=0之間的距離是$\frac{11}{10}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設(shè)A、B為兩個獨立事件,若P(A)=0.4,P(A∪B)=0.7.則P(B)=( 。
A.0.6B.0.5C.0.4D.0.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.方程|x2-2x|=a2+1(a>0)的解的個數(shù)是2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.如圖是NBA15-16季后賽中勒布朗-詹姆斯(LeBron James)與斯蒂芬-庫里(Stephen Curry)隨機抽取的8場比賽得分統(tǒng)計結(jié)果,則下列說法正確的是( 。
A.他們的水平相當,但James 比Curry發(fā)揮穩(wěn)定
B.他們的水平相當,但Curry比James 發(fā)揮穩(wěn)定
C.James比Curry水平高,也比Curry發(fā)揮穩(wěn)定
D.Curry比水平高,也比James發(fā)揮穩(wěn)定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.設(shè)變量x,y滿足約束條件:$\left\{\begin{array}{l}{x≤1}\\{x-y+1≥0}\\{x+y-1≥0}\end{array}\right.$,則目標函數(shù)z=x+3y的最大值為7.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.若函數(shù)f(x)=ax2+ax-1對?x∈R都有f(x)<0恒成立,則實數(shù)a的取值范圍是( 。
A.-4<a≤0B.a<-4C.-4<a<0D.a≤0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.若關(guān)于x、y的線性方程組$(\begin{array}{l}{m}&{1}\\{1}&{m}\end{array})$$(\begin{array}{l}{x}\\{y}\end{array})$=$(\begin{array}{l}{{m}^{2}}\\{m}\end{array})$有無窮多組解,則實數(shù)m的值是±1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知sinx=$\frac{3}{5}$,其中0≤x≤$\frac{π}{2}$.
(1)求cosx,tanx的值;
(2)求$\frac{sin(-x)}{{cos(\frac{π}{2}-x)+cos(2π-x)}}$的值.

查看答案和解析>>

同步練習冊答案