9.△ABC的內(nèi)角A,B,C的對(duì)邊分別為,且2acosC=2b-c.
(1)求A的大小;
(2)若△ABC為銳角三角形,求sinB+sinC的取值范圍;
(3)若$a=2\sqrt{3}$,且△ABC的面積為$2\sqrt{3}$,求cos2B+cos2C的值.

分析 (1)由余弦定理和夾角公式可得cosA=$\frac{1}{2}$,即可求出A的大小,
(2)求出角B的范圍,再根據(jù)sinB+sinC=$\sqrt{3}$sin(B+$\frac{π}{6}$),利用正弦函數(shù)的性質(zhì)即可求出范文,
(3)由余弦定理和三角形的面積公式求出b,c的值,再根據(jù)正弦定理即可求出B,C的值,問(wèn)題得以解決

解答 解:(1)由余弦定理得:cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$,
∵2acosC=2b-c,
∴2a•$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=2b-c,
即b2+c2-a2=ab,
∴cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{1}{2}$,
∵A∈(0,π),
∴A=$\frac{π}{3}$,
(2)∵△ABC為銳角三角形,
∴0<B,C<$\frac{π}{2}$,
∵C=$\frac{2π}{3}$-B,
∴$\frac{π}{6}$<B<$\frac{π}{2}$,
∵sinB+sinC=sinB+sin($\frac{2π}{3}$-B)=$\sqrt{3}$sin(B+$\frac{π}{6}$),
∵$\frac{π}{3}$<B+$\frac{π}{6}$<$\frac{2π}{3}$,
∴sin(B+$\frac{π}{6}$)∈($\frac{\sqrt{3}}{2}$,1],
∴sinB+sinC的取值范圍為($\frac{3}{2}$,$\sqrt{3}$],
(3)在△ABC中,由余弦定理可得a2=b2+c2-2bccosA,
即12=b2+c2-bc   ①,
∵△ABC的面積為$2\sqrt{3}$,
∴$\frac{1}{2}$bcsinA=2$\sqrt{3}$,
即bc=8,②,
由①②可得b=2,c=4,或b=4,c=2,
不放設(shè)b=2,c=4,
由正弦定理$\frac{a}{sinA}$=$\frac{sinB}$=$\frac{c}{sinC}$=$\frac{2\sqrt{3}}{\frac{\sqrt{3}}{2}}$=4,
∴sinB=$\frac{1}{2}$,sinC=1,
∴B=$\frac{π}{6}$,C=$\frac{π}{2}$,
∴cos2B+cos2C=cos$\frac{π}{3}$+cosπ=$\frac{1}{2}$-1=-$\frac{1}{2}$

點(diǎn)評(píng) 本題考查了正弦定理余弦定理和三角形的面積公式以及三角函數(shù)的性質(zhì),考查了學(xué)生的運(yùn)算能力和轉(zhuǎn)化能力,屬于中檔題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.如圖,梯形ABCD中,AB∥CD,AB=2,CD=4,BC=AD=$\sqrt{5}$,E和F分別為AD與BC的中點(diǎn),對(duì)于常數(shù)λ,在梯形ABCD的四條邊上恰好有8個(gè)不同的點(diǎn)P,使得$\overrightarrow{PE}$•$\overrightarrow{PF}$=λ成立,則實(shí)數(shù)λ的取值范圍是(  )
A.(-$\frac{5}{4}$,-$\frac{9}{20}$)B.(-$\frac{5}{4}$,$\frac{11}{4}$)C.(-$\frac{1}{4}$,$\frac{11}{4}$)D.(-$\frac{9}{20}$,-$\frac{1}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知一三棱柱ABC-A1B1C1各棱長(zhǎng)相等,B1在底面ABC上的射影是AC的中點(diǎn),則異面直線AA1與BC所成角的余弦值為(  )
A.$\frac{\sqrt{7}}{4}$B.$\frac{3}{4}$C.$\frac{1}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.在△ABC中,若sinA:sinB:sinC=3:5:7,則cosC=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.從4臺(tái)甲型和5臺(tái)乙型電視機(jī)中任意取出2臺(tái),其中甲型與乙型電視機(jī)各1臺(tái),則不同的取法種數(shù)為20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.將參加夏令營(yíng)的100名學(xué)生編號(hào)為:001,002,…,100,采用系統(tǒng)抽樣方法抽取一個(gè)容量為20的樣本,且隨機(jī)抽得的號(hào)碼為003.這100名學(xué)生分住在三個(gè)營(yíng)區(qū),從001到015在第 I營(yíng)區(qū),從016到055住在第 II營(yíng)區(qū),從056到100在第 III營(yíng)區(qū),則第 II個(gè)營(yíng)區(qū)被抽中的人數(shù)應(yīng)為( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在銳角△ABC中,若sinA=3sinBsinC,則tanAtanBtanC的最小值是12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知角α的終邊在y=$\frac{1}{3}$x上,則sinα=$±\frac{{\sqrt{10}}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知命題p:f(x)=lnx+2x2+6mx+1在(0,+∞)上單調(diào)遞增,q:m≥-5,則p是q的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案