15.若如圖框圖所給的程序運(yùn)行結(jié)果為S=28,那么判斷框中應(yīng)填入的關(guān)于k的條件是( 。
A.k≥8B.k>8C.k≥7D.k>9

分析 根據(jù)所給的程序運(yùn)行結(jié)果為S=28,執(zhí)行循環(huán)語(yǔ)句,當(dāng)計(jì)算結(jié)果S為28時(shí),不滿足判斷框的條件,退出循環(huán),從而到結(jié)論.

解答 解:由題意可知輸出結(jié)果為S=28,
第1次循環(huán),S=11,k=9,
第2次循環(huán),S=20,k=8,
第3次循環(huán),S=28,k=7,
此時(shí)S滿足輸出結(jié)果,退出循環(huán),所以判斷框中的條件為k≥8.
故選:A.

點(diǎn)評(píng) 本題主要考查了循環(huán)結(jié)構(gòu),是當(dāng)型循環(huán),當(dāng)滿足條件,執(zhí)行循環(huán),同時(shí)考查了推理能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若$\frac{ai}{2-i}=1-2i$,則a=(  )
A.5B.-5C.5iD.-5i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.能夠使sinx≥0和cotx≥0同時(shí)成立的x的集合是( 。
A.{x|0<x≤$\frac{π}{2}$}B.{x|2kπ≤x≤2kπ+$\frac{π}{2}$,k∈Z}
C.{x|2kπ<x≤2kπ+$\frac{π}{2}$,k∈Z}D.{x|kπ<x≤kπ+$\frac{π}{2}$,k∈Z}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在如圖1所示的平面圖形中,△ADE是等腰三角形且AE=DE=$\sqrt{5}$,四邊形ABCD為矩形,AD=2,CD=$\sqrt{2}$,△BCF為直角三角形.把△ADE與△BCF分別沿AD、BC折成如圖2所示的幾何體,且平面ADE⊥平面ABCD,CF⊥平面ABCD,

(1)求證:BD⊥EF;
(2)若CF=1,試求EF與面BDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.全美職業(yè)籃球聯(lián)賽(NBA)某年度總決賽在克利夫蘭騎士隊(duì)與金州勇士隊(duì)之間角逐,比賽采用七局四勝制,即若有一隊(duì)先勝四場(chǎng),則此隊(duì)獲勝,比賽就此結(jié)束.因兩隊(duì)實(shí)力相當(dāng),故每場(chǎng)比賽獲勝的可能性相等.據(jù)以往資料統(tǒng)計(jì),第一場(chǎng)比賽組織者可獲得門票收入2000萬(wàn)美元,以后每場(chǎng)比賽門票收入比上一場(chǎng)增加100萬(wàn)美元.當(dāng)兩隊(duì)決出勝負(fù)后,
問(wèn):(1)組織者在此次決賽中要獲得門票收入不少于13500萬(wàn)美元的概率為多少?
(2)某隊(duì)在比賽過(guò)程中曾一度比分(勝一場(chǎng)得1分)落后2分以上(含2分),最后取得全場(chǎng)勝利稱為“逆襲”,求騎士隊(duì)“逆襲”獲勝的概率;
(3)求此次決賽所需比賽場(chǎng)數(shù)的概率分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若f(x)=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{x}$,計(jì)算得當(dāng)n=1時(shí)f(2)=$\frac{3}{2}$,當(dāng)n≥2時(shí)有f(4)>2,f(8)>$\frac{5}{2}$,f(16)>3,f(32)>$\frac{7}{2}$,…,因此猜測(cè)當(dāng)n≥2時(shí),一般有不等式f(2n)≥$\frac{n+2}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在數(shù)學(xué)考試中,小明的成績(jī)?cè)?0分以上的概率是0.18,在80~89分的概率是0.51,在70~79分的概率是0.15,在60~69分的概率是0.09,60分以下的概率是0.07.計(jì)算:
(1)小明在數(shù)學(xué)考試中取得80分以上成績(jī)的概率;
(2)小明考試及格的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.下列向量$\overrightarrow a$與$\overrightarrow b$共線(其中向量$\overrightarrow{e_1}與\overrightarrow{e_2}$不共線)的是( 。
A.$\overrightarrow a=4\overrightarrow{e_1}-5\overrightarrow{e_2},\overrightarrow b=3\overrightarrow{e_1}+4\overrightarrow{e_2}$B.$\overrightarrow a=\overrightarrow{e_1}-\overrightarrow{e_2},\overrightarrow b=3\overrightarrow{e_1}+3\overrightarrow{e_2}$
C.$\overrightarrow a=\frac{1}{2}\overrightarrow{e_1}+\frac{1}{3}\overrightarrow{e_2},\overrightarrow b=3\overrightarrow{e_1}+2\overrightarrow{e_2}$D.$\overrightarrow a=2\overrightarrow{e_1},\overrightarrow b=-4\overrightarrow{e_2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)函數(shù)f(x)=x3+log2x,$則\lim_{t→0}\frac{f(1+t)-f(1)}{t}$=3+$\frac{1}{ln2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案