【題目】如圖1,平面五邊形中,,,,,是邊長為2的正三角形.現(xiàn)將沿折起,得到四棱錐(如圖2),且.
(1)求證:平面平面;
(2)在棱上是否存在點,使得平面?若存在,求的值;若不存在,請說明理由.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線l的參數(shù)方程為為參數(shù)),以原點O為極點,x軸的正半軸為極軸建立極坐標系,圓C的極坐標方程為ρ=asinθ(a≠0).
(1)求圓C的直角坐標方程與直線l的普通方程;
(2)設直線l截圓C的弦長是半徑長的倍,求a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),已知在有且僅有3個零點,下列結論正確的是( )
A.在上存在,,滿足
B.在有且僅有1個最小值點
C.在單調(diào)遞增
D.的取值范圍是
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,,,,且,.
(1)證明:平面;
(2)在線段上,是否存在一點,使得二面角的大小為?如果存在,求的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求曲線在點處的切線方程;
(2)求的單調(diào)區(qū)間;
(3)若對于任意,都有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線()上的兩個動點和,焦點為F.線段的中點為,且點到拋物線的焦點F的距離之和為8
(1)求拋物線的標準方程;
(2)若線段的垂直平分線與x軸交于點C,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種“籠具”由內(nèi),外兩層組成,無下底面,內(nèi)層和外層分別是一個圓錐和圓柱,其中圓柱與圓錐的底面周長相等,圓柱有上底面,制作時需要將圓錐的頂端剪去,剪去部分和接頭忽略不計,已知圓柱的底面周長為,高為,圓錐的母線長為.
(1)求這種“籠具”的體積(結果精確到0.1);
(2)現(xiàn)要使用一種紗網(wǎng)材料制作50個“籠具”,該材料的造價為每平方米8元,共需多少元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,圓C的普通方程為在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,直線l的極坐標方程為.Ⅰ寫出圓C的參數(shù)方程和直線l的直角坐標方程;Ⅱ設直線l與x軸和y軸的交點分別為A、B,P為圓C上的任意一點,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com