【題目】若拋物線的焦點(diǎn)為,是坐標(biāo)原點(diǎn),為拋物線上的一點(diǎn),向量與軸正方向的夾角為60°,且的面積為.
(1)求拋物線的方程;
(2)若拋物線的準(zhǔn)線與軸交于點(diǎn),點(diǎn)在拋物線上,求當(dāng)取得最大值時(shí),直線的方程.
【答案】(1) ;(2) 或
【解析】
(1)先設(shè)的坐標(biāo)為,根據(jù)向量與軸正方向的夾角為60°,可得出,再利用三角形的面積公式可求得的值即可求出拋物線的方程;
(2) 先設(shè)的坐標(biāo)為,利用兩點(diǎn)間的距離公式分別求出,,再利用基本不等式求出取得最大值時(shí)點(diǎn)的坐標(biāo),即可求出直線的方程.
(1))設(shè)的坐標(biāo)為,(如圖)
因?yàn)橄蛄?/span>與軸正方向的夾角為60°,,
所以,
根據(jù)拋物線定義得:,
即,解得:即,
則,
解得:即拋物線的方程為:;
(2) 設(shè)的坐標(biāo)為,,則
,
因?yàn)辄c(diǎn)在拋物線:上,即有:,
所以,
,
因此
當(dāng)且僅當(dāng)即時(shí)等號成立,
此時(shí),,
所以直線的方程為:
或
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長為2的正方形沿對角線折疊,使得平面平面,又平面.
(1)若,求直線與直線所成的角;
(2)若二面角的大小為,求的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高一、高二年級的全體學(xué)生都參加了體質(zhì)健康測試,測試成績滿分為100分,規(guī)定測試成績在之間為“體質(zhì)優(yōu)秀”,在之間為“體質(zhì)良好”,在之間為“體質(zhì)合格”,在之間為“體質(zhì)不合格”.現(xiàn)從這兩個(gè)年級中各隨機(jī)抽取7名學(xué)生,測試成績?nèi)缦拢?/span>
其中m,n是正整數(shù).
(Ⅰ)若該校高一年級有280學(xué)生,試估計(jì)高一年級“體質(zhì)優(yōu)秀”的學(xué)生人數(shù);
(Ⅱ)若從高一年級抽取的7名學(xué)生中隨機(jī)抽取2人,記X為抽取的2人中為“體質(zhì)良好”的學(xué)生人數(shù),求X的分布列及數(shù)學(xué)期望;
(Ⅲ)設(shè)兩個(gè)年級被抽取學(xué)生的測試成績的平均數(shù)相等,當(dāng)高二年級被抽取學(xué)生的測試成績的方差最小時(shí),寫出m,n的值.(只需寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程.
(Ⅰ)求直線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(Ⅱ)若直線與曲線交于,兩點(diǎn),求的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=log4(4x+1)+kx(k∈R)是偶函數(shù).
(1)求k的值;
(2)設(shè)g(x)=log4,若函數(shù)f(x)與g(x)的圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的參數(shù)方程為:(為參數(shù)),的參數(shù)方程為:(為參數(shù)).
(1)化、的參數(shù)方程為普通方程,并說明它們分別表示什么曲線;
(2)若直線的極坐標(biāo)方程為:,曲線上的點(diǎn)對應(yīng)的參數(shù),曲線上的點(diǎn)對應(yīng)的參數(shù),求的中點(diǎn)到直線的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,直線,圓的方程為,直線被圓截得的弦長與橢圓的短軸長相等,橢圓的左頂點(diǎn)為,上頂點(diǎn)為.
(1)求橢圓的方程;
(2)已知經(jīng)過點(diǎn)且斜率為直線與橢圓有兩個(gè)不同的交點(diǎn)和,請問是否存在常數(shù),使得向量與共線?如果存在,求出的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】去年年底,某商業(yè)集團(tuán)公司根據(jù)相關(guān)評分細(xì)則,對其所屬25家商業(yè)連鎖店進(jìn)行了考核評估.將各連鎖店的評估分?jǐn)?shù)按[60,70), [70,80), [80,90), [90,100),分成四組,其頻率分布直方圖如下圖所示,集團(tuán)公司依據(jù)評估得分,將這些連鎖店劃分為A,B,C,D四個(gè)等級,等級評定標(biāo)準(zhǔn)如下表所示.
評估得分 | [60,70) | [70,80) | [80,90) | [90,100) |
評定等級 | D | C | B | A |
(1)估計(jì)該商業(yè)集團(tuán)各連鎖店評估得分的眾數(shù)和平均數(shù);
(2)從評估分?jǐn)?shù)不小于80分的連鎖店中任選2家介紹營銷經(jīng)驗(yàn),求至少選一家A等級的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形中,,,,是EA的中點(diǎn)(如圖1),將沿CD折起到圖2中的位置,得到四棱錐是.
(1)求證:平面PDA;
(2)若PD與平面ABCD所成的角為.且為銳角三角形,求平面PAD和平面PBC所成銳二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com