已知橢圓:,過點作圓的切線交橢圓于A,B兩點。
(1)求橢圓的焦點坐標(biāo)和離心率;
(2)求的取值范圍;
(3)將表示為的函數(shù),并求的最大值.
(1)橢圓的焦點坐標(biāo)為,離心率為;(2);(3).當(dāng)時,,所以的最大值為2.
解析試題分析:(1)由已知及,,關(guān)系可得的值,從而得橢圓的焦點坐標(biāo).由離心率計算公式可求得橢圓的離心率;(2)過點能作圓的切線,則此點在圓上或圓外,由此可得的取值范圍;(3)先考慮過點所作的圓的切線斜率不存在的情形,即先求和時的長;再考慮時的情形.設(shè)切線的方程為,代入橢圓方程消去得關(guān)于的一元二次方程:,設(shè)兩點的坐標(biāo)分別為,利用韋達(dá)定理可得及的值,代入弦長公式,可得弦長的表達(dá)式,利用圓的切線性質(zhì)消去,得弦長關(guān)于的函數(shù),最后利用均值不等式可求得的最大值.
試題解析:(1)由已知可得.所以橢圓的焦點坐標(biāo)為離心率為; 4分
(2)由題意知,,即; 6分
(3)當(dāng)時,切線的方程為,點的坐標(biāo)為,此時.
當(dāng)時,同理可得 8分
當(dāng)時,設(shè)切線的方程為,由;
設(shè)兩點的坐標(biāo)分別為,則; 10分
又由與圓 11分
.
.,且當(dāng)時,,所以的最大值為2. 15分
考點:1.求橢圓離心率;2.圓的切線;.3.直線和橢圓的相交弦長的計算;4.均值不等式的應(yīng)用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知頂點在原點,焦點在軸上的拋物線過點.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若拋物線與直線交于、兩點,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的頂點為原點,其焦點到直線的距離為.設(shè)為直線上的點,過點作拋物線的兩條切線,其中為切點.
(Ⅰ)求拋物線的方程;
(Ⅱ)設(shè)點為直線上的點,求直線的方程;
(Ⅲ) 當(dāng)點在直線上移動時,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在周長為定值的DDEC中,已知,動點C的運動軌跡為曲線G,且當(dāng)動點C運動時,有最小值.
(1)以DE所在直線為x軸,線段DE的中垂線為y軸建立直角坐標(biāo)系,求曲線G的方程;
(2)直線l分別切橢圓G與圓(其中)于A、B兩點,求|AB|的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在軸上方有一段曲線弧,其端點、在軸上(但不屬于),對上任一點及點,,滿足:.直線,分別交直線于,兩點.
(Ⅰ)求曲線弧的方程;
(Ⅱ)求的最小值(用表示);
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線與雙曲線有公共焦點,點是曲線在第一象限的交點,且.
(1)求雙曲線的方程;
(2)以雙曲線的另一焦點為圓心的圓與直線相切,圓.過點作互相垂直且分別與圓、圓相交的直線和,設(shè)被圓截得的弦長為,被圓截得的弦長為,問:是否為定值?如果是,請求出這個定值;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,直線l與拋物線相交于不同的兩點A,B.
(I)如果直線l過拋物線的焦點,求的值;
(II)如果,證明直線l必過一定點,并求出該定點坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知△ABC的兩個頂點A,B的坐標(biāo)分別是(-5,0),(5,0),且AC,BC所在直
線的斜率之積等于m(m≠0),求頂點C的軌跡.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)是拋物線上相異兩點,到y(tǒng)軸的距離的積為且.
(1)求該拋物線的標(biāo)準(zhǔn)方程.
(2)過Q的直線與拋物線的另一交點為R,與軸交點為T,且Q為線段RT的中點,試求弦PR長度的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com