分析 (Ⅰ)設(shè)M,N分別是AB和CD的中點(diǎn),連接PM,MN,PN,推導(dǎo)出PM⊥AB,MN⊥AB,從而∠PMN為二面角P-AB-C的平面角,由此能求出二面角P-AB-C的大。
(Ⅱ)設(shè)E,F(xiàn),G分別為MB,PN和PC的中點(diǎn),連接MF,F(xiàn)G,EG,EC,推導(dǎo)出MF⊥PN,CD⊥MF,從而MF⊥平面PCD,推導(dǎo)出四邊形EMFG為平行四邊形,從而EG⊥平面PCD,由此得到存在點(diǎn)E,使平面PCE⊥平面PCD,此時(shí)E為線段MB的中點(diǎn).
解答 解:(Ⅰ)如圖,設(shè)M,N分別是AB和CD的中點(diǎn),連接PM,MN,PN…(1分)
∵PA=PB,M是AB的中點(diǎn)
∴PM⊥AB
又在正方形ABCD中有MN⊥AB
∴∠PMN為二面角P-AB-C的平面角…(3分)
∵$PA=PB=\sqrt{5}$,AB=2,M是AB的中點(diǎn)
∴PM=2
同理可得PN=2,又MN=2
∴△PMN是等邊三角形,故∠PMN=60°
∴二面角P-AB-C為60°,…(5分)
(Ⅱ)存在點(diǎn)E,使平面PCE⊥平面PCD,此時(shí)E為線段MB的中點(diǎn).理由如下 …(6分)
如圖,設(shè)E,F(xiàn),G分別為MB,PN和PC的中點(diǎn),連接MF,F(xiàn)G,EG,EC…(8分)
由(Ⅰ)知△PMN是等邊三角形,故MF⊥PN
∵CD⊥MN,CD⊥PN,MN∩PN=N
∴CD⊥平面PMN,故CD⊥MF
又CD∩PN=N
∴MF⊥平面PCD…(10分)
∵F,G分別為PN和PC的中點(diǎn)
∴FG=∥$\frac{1}{2}NC$
又E為線段MB的中點(diǎn)
∴FG=∥ME,故四邊形EMFG為平行四邊形…(11分)
∴EG∥MF
∴EG⊥平面PCD
又EG?平面PCE
∴平面PCE⊥平面PCD.…(12分)
點(diǎn)評(píng) 本題考查二面角的大小的求法,考查滿足面面垂直的點(diǎn)是否存在的判斷與求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | -$\frac{1}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com