分析 (1)由已知可得a2+b2=4,c=$\sqrt{2}$得a2,b2,設(shè)直線l:y=kx+3.把y=kx+3b2=1代入$\frac{{x}^{2}}{3}+{y}^{2}=1$,消去y得(1+3k2)x2+18kx+24=0.則△=(18k)2-4×24(1+3k2)>0,得k的取值范圍;
(2)設(shè)A(x1,y1),B(x2,y2),則x1+x2=-$\frac{18k}{1+3{k}^{2}}$,x1x2=$\frac{24}{1+3{k}^{2}}$,又y1y2=(kx1+3)(kx2+3)=$\frac{-3{k}^{2}+9}{3{k}^{2}+1}$,y1+y2=(kx1+3)+(kx2+3)=$\frac{6}{3{k}^{2}+1}$.假設(shè)存在點(diǎn)E(0,m),則$\overrightarrow{AE}=(-{x}_{1},m-{y}_{1}),\overrightarrow{BE}=(-{x}_{2},m-{y}_{2})$,
⇒$\overrightarrow{AE}•\overrightarrow{BE}$═x1x2+m2-m(y1+y2)+y1y=$\frac{24}{1+3{k}^{2}}+{m}^{2}-\frac{6{m}^{2}}{1+3{k}^{2}}+\frac{-3{k}^{2}+9}{1+3{k}^{2}}$=$\frac{(3{m}^{2}-3){k}^{2}+{m}^{2}-6m+33}{1+3{k}^{2}}$要使得$\overrightarrow{AE}•\overrightarrow{BE}=t$(t為常數(shù)),只要$\frac{(3{m}^{2}-3){k}^{2}+{m}^{2}-6m+33}{3{k}^{2}+1}=t$,從而$\frac{3{m}^{2}-3}{3}=\frac{{m}^{2}-6m+33}{1}$,解得m
解答 解:(1)由已知可得a2+b2=4,c=$\sqrt{2}$得a2=3,b2=1,$\frac{{x}^{2}}{3}+{y}^{2}=1$.
過點(diǎn)D(0,3)且斜率0為k的直線l:y=kx+3.
把y=kx+3b2=1代入$\frac{{x}^{2}}{3}+{y}^{2}=1$,消去y得(1+3k2)x2+18kx+24=0.
則△=(18k)2-4×24(1+3k2)>0
k>$\frac{2\sqrt{6}}{3}$或k<-$\frac{2\sqrt{6}}{3}$,
所以k的取值范圍是(-∞,-$\frac{2\sqrt{6}}{3})$∪($\frac{2\sqrt{6}}{3},+∞)$.…(5分)
(2)設(shè)A(x1,y1),B(x2,y2),
則x1+x2=-$\frac{18k}{1+3{k}^{2}}$,x1x2=$\frac{24}{1+3{k}^{2}}$,又y1y2=(kx1+3)(kx2+3)=$\frac{-3{k}^{2}+9}{3{k}^{2}+1}$,
y1+y2=(kx1+3)+(kx2+3)=$\frac{6}{3{k}^{2}+1}$.…(6分)
假設(shè)存在點(diǎn)E(0,m),則$\overrightarrow{AE}=(-{x}_{1},m-{y}_{1}),\overrightarrow{BE}=(-{x}_{2},m-{y}_{2})$,
所以$\overrightarrow{AE}•\overrightarrow{BE}$═x1x2+m2-m(y1+y2)+y1y=$\frac{24}{1+3{k}^{2}}+{m}^{2}-\frac{6{m}^{2}}{1+3{k}^{2}}+\frac{-3{k}^{2}+9}{1+3{k}^{2}}$
=$\frac{(3{m}^{2}-3){k}^{2}+{m}^{2}-6m+33}{1+3{k}^{2}}$,…(8分)
要使得$\overrightarrow{AE}•\overrightarrow{BE}=t$(t為常數(shù)),只要$\frac{(3{m}^{2}-3){k}^{2}+{m}^{2}-6m+33}{3{k}^{2}+1}=t$,
從而$\frac{3{m}^{2}-3}{3}=\frac{{m}^{2}-6m+33}{1}$,
整理得6m=34,
解得m=$\frac{17}{3}$,從而t=$\frac{280}{9}$,
故存在定點(diǎn)E(0,$\frac{17}{3}$).…(12分)
點(diǎn)評 本題考查了直線與橢圓的位置關(guān)系,及定點(diǎn)問題,屬于壓軸題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | c>a>b | B. | a>c>b | C. | b>a>c | D. | a>b>c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{82}{3}$ | B. | 26 | C. | 80 | D. | $\frac{80}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 432 | B. | 384 | C. | 308 | D. | 288 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com