17.在平面直角坐標系xOy中,以坐標原點為圓心且與直線mx-y-2m+1=0(m∈R)相切的所有圓中,半徑最大的圓的標準方程為(  )
A.x2+y2=5B.x2+y2=3C.x2+y2=9D.x2+y2=7

分析 由題意畫出圖形,可得當圓與直線mx-y-2m+1=0切于P(2,1)時,圓的半徑最大,求出圓的半徑可得半徑最大的圓的標準方程.

解答 解:直線mx-y-2m+1=0過定點P(2,1),如圖,

∴當圓與直線mx-y-2m+1=0切于P時,圓的半徑最大為$\sqrt{5}$.
此時圓的標準方程為x2+y2=5.
故選:A.

點評 本題考查直線與圓位置關(guān)系的應(yīng)用,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

7.某教師有相同的語文參考書3本,相同的數(shù)學參考書4本,從中取出4本贈送給4位學生,每位學生1本,則不同的贈送方法共有( 。
A.20種B.15種C.10種D.4種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知橢圓C的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的一條漸近線與x軸所成的夾角為30°,且雙曲線的焦距為4$\sqrt{2}$.
(1)求橢圓C的方程;
(2)過右焦點F的直線l,交橢圓于A、B兩點,記△AOF的面積為S1,△BOF的面積為S2,當S1=2S2時,求$\overrightarrow{OA}$•$\overrightarrow{OB}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.一個家庭中有兩個小孩.假定生男、生女是等可能的,已知這個家庭有一個是女孩,問另一個小孩是男孩的概率是$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=ex-ax有極值1,這里e是自然對數(shù)的底數(shù).
(1)求實數(shù)a的值,并確定1是極大值還是極小值;
(2)若當x∈[0,+∞)時,f(x)≥mxln(x+1)+1恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.如果雙曲線C:$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1({a>0,b>0})$的漸近線與拋物線y=x2+$\frac{1}{4}$相切,則C的離心率為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.一塊長為20cm,寬為12cm的矩形鐵皮,將其四個角截去一個邊長為a的小正方形,然后折成一個無蓋的盒子,寫出這個盒子的體積V與邊長x的函數(shù)關(guān)系式,并討論這個函數(shù)的定義域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.在數(shù)列{an}中,對任意n∈N*,都有an+1-2an=0,則$\frac{{2{a_1}+{a_2}}}{{2{a_3}+{a_4}}}$等于( 。
A.2B.4C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.三進制數(shù)2022(3)化為六進制數(shù)為abc(6),則a+b+c=7.

查看答案和解析>>

同步練習冊答案