1.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦點(diǎn)分別為F1、F2,如果$\overrightarrow{M{F}_{1}}$•$\overrightarrow{M{F}_{2}}$=0,則橢圓離心率的取值范圍是( 。
A.(0,$\frac{1}{2}$]B.[$\frac{1}{2}$,1)C.(0,$\frac{\sqrt{2}}{2}$]D.[$\frac{\sqrt{2}}{2}$,1)

分析 設(shè)M(acosθ,bsinθ),由直角三角形的性質(zhì),可得|OM|=c,利用勾股定理求得(acosθ)2+(bsinθ)2=c2,即可求得e=$\frac{c}{a}$=$\frac{1}{\sqrt{1+(sinθ)^{2}}}$,由正弦函數(shù)的性質(zhì),即可求得圓離心率的取值范圍.

解答 解:設(shè)M(acosθ,bsinθ),(sinθ≠0).
∵$\overrightarrow{M{F}_{1}}$•$\overrightarrow{M{F}_{2}}$=0,則$\overrightarrow{M{F}_{1}}$⊥$\overrightarrow{M{F}_{2}}$,則|OM|=c.
∴(acosθ)2+(bsinθ)2=c2
∵a2=b2+c2,
∴e=$\frac{c}{a}$=$\frac{1}{\sqrt{1+(sinθ)^{2}}}$,
∵0<|sinθ|≤1.
∴$\frac{\sqrt{2}}{2}$≤e<1.
故選D.

點(diǎn)評(píng) 本題考查橢圓的參數(shù)方程,正弦函數(shù)的性質(zhì),考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知數(shù)列{an}是單調(diào)遞減的等差數(shù)列,S6=S11,有以下四個(gè)結(jié)論:
(1)a9=0
(2)當(dāng)n=8或n=9時(shí),Sn取最大值
(3)存在正整數(shù)k使得Sk=0
(4)存在正整數(shù)m使得Sm=S2m
其中正確的是(1),(2),(3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)單調(diào)遞減,若實(shí)數(shù)a滿(mǎn)足f(log3a)+f(${log}_{\frac{1}{3}}$a)≤2f(2),則a的取值范圍是(  )
A.[$\frac{1}{9}$,9]B.(-∞,$\frac{1}{9}$]C.[$\frac{1}{2}$,2]D.(0,$\frac{1}{9}$]∪[9,+∞]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)集合A={x|y=lg(x-3)},B={y|y=2x,x∈R},則A∪B等于(  )
A.B.RC.{x|x>1}D.{x|x>0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知定義在R上的函數(shù)y=f(x)滿(mǎn)足條件f(x+$\frac{3}{2}$)=-f(x),且函數(shù)y=f(x-$\frac{3}{4}$)為奇函數(shù),給出以下四個(gè)命題:
①函數(shù)f(x)是周期函數(shù);
②函數(shù)f(x)的圖象關(guān)于點(diǎn)(-$\frac{3}{4}$,0)對(duì)稱(chēng);
③函數(shù)f(x)為R上的偶函數(shù);
④函數(shù)f(x)為R上的單調(diào)函數(shù);
其中真命題的序號(hào)為①②③(寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.下列命題正確的是(  )
A.四條線(xiàn)段順次首尾連接,所得的圖形一定是平面圖形
B.一條直線(xiàn)和兩條平行直線(xiàn)都相交,則三條直線(xiàn)共面
C.兩兩平行的三條直線(xiàn)一定確定三個(gè)平面
D.和兩條異面直線(xiàn)都相交的直線(xiàn)一定是異面直線(xiàn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.下列各組函數(shù)中,表示同一函數(shù)的是(  )
A.f(x)=2log2x,$g(x)={log_2}{x^2}$B.f(x)=|x|,$g(x)={(\sqrt{x})^2}$
C.f(x)=x,$g(x)=lo{g_2}{2^x}$D.f(x)=x+1,$g(x)=\frac{x^2}{x}-1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.在△ABC中,AB=7,BC=5,CA=6,則$\overrightarrow{AB}$•$\overrightarrow{BC}$=-19.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知F1,F(xiàn)2分別是橢圓$\frac{x^2}{4}+{y^2}=1$的兩焦點(diǎn),點(diǎn)P是該橢圓上一動(dòng)點(diǎn),則$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的取值范圍為[-2,1].

查看答案和解析>>

同步練習(xí)冊(cè)答案