2.設(shè)集合A={x|y=lg(x-3)},B={y|y=2x,x∈R},則A∪B等于(  )
A.B.RC.{x|x>1}D.{x|x>0}

分析 求定義域得集合A,求值域得集合B,根據(jù)并集的定義寫出A∪B.

解答 解:集合A={x|y=lg(x-3)}={x|x-3>0}={x|x>3},
B={y|y=2x,x∈R}={y|y>0},
則A∪B={x|x>0}.
故選:D.

點(diǎn)評(píng) 本題考查了求函數(shù)的定義域和值域的應(yīng)用問題,也考查了并集的運(yùn)算問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某車間計(jì)劃生產(chǎn)甲、乙兩種產(chǎn)品,甲種產(chǎn)品每噸消耗A原料6噸、B原料4噸、C原料4噸,乙種產(chǎn)品每噸消耗A原料3噸、B原料12噸、C原料6噸.已知每天原料的使用限額為A原料240噸、B原料400噸、C原料240噸.生產(chǎn)甲種產(chǎn)品每噸可獲利900元,生產(chǎn)乙種產(chǎn)品每噸可獲利600元,分別用x,y表示每天生產(chǎn)甲、乙兩種產(chǎn)品的噸數(shù)
(Ⅰ)用x,y列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(Ⅱ)每天分別生甲、乙兩種產(chǎn)品各多少噸,才能使得利潤最大?并求出此最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=-lnx2-|x|,則關(guān)于m的不等式f($\frac{1}{m}$)<2(ln$\frac{1}{2}$-1)的解集為( 。
A.(0,$\frac{1}{2}$)B.(-$\frac{1}{2}$,0)∪(0,$\frac{1}{2}$)C.(0,2)D.(-2,0)∪(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.一個(gè)口袋內(nèi)裝有除顏色外完全相同的2個(gè)白球和2個(gè)黑球,從中一次隨機(jī)取出2個(gè)球,則至少取到1個(gè)黑球的概率為$\frac{5}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦點(diǎn)F是拋物線y2=8x焦點(diǎn),兩曲線的一個(gè)公共點(diǎn)為P,且|PF|=5,則該雙曲線的離心率為(  )
A.2B.$\frac{\sqrt{5}}{2}$C.$\sqrt{5}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知f(x)=ex-e,則曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程是y=ex-e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦點(diǎn)分別為F1、F2,如果$\overrightarrow{M{F}_{1}}$•$\overrightarrow{M{F}_{2}}$=0,則橢圓離心率的取值范圍是( 。
A.(0,$\frac{1}{2}$]B.[$\frac{1}{2}$,1)C.(0,$\frac{\sqrt{2}}{2}$]D.[$\frac{\sqrt{2}}{2}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若以雙曲線$\frac{x^2}{a^2}-\frac{y^2}{4}=1({a>0})$的左、右焦點(diǎn)和點(diǎn)$({2,\sqrt{5}})$為頂點(diǎn)的三角形為直角三角形,則該雙曲線的焦距為( 。
A.$2\sqrt{5}$B.6C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在直徑AB=4的圓上有長度為2的動(dòng)弦CD,則$\overrightarrow{AC}•\overrightarrow{BD}$的最大值為2.

查看答案和解析>>

同步練習(xí)冊答案