11.在△ABC中,若a=$\sqrt{2}$,b=2,sinB+cosB=$\sqrt{2}$,則A=$\frac{π}{6}$.

分析 由sinB+cosB=$\sqrt{2}$,平方可求sin2B,進(jìn)而可求B,然后利用正弦定理可求sinA,進(jìn)而可求A.

解答 解:由sinB+cosB=$\sqrt{2}$,兩邊平方可得1+2sinBcosB=2,
可得:2sinBcosB=1,即sin2B=1,
因?yàn)?<B<π,
所以B=$\frac{π}{4}$,
又因?yàn)閍=$\sqrt{2}$,b=2,
所以在△ABC中,由正弦定理得:$\frac{\sqrt{2}}{sinA}$=$\frac{2}{sin\frac{π}{4}}$,
解得sinA=$\frac{1}{2}$,又a<b,所以A<B=$\frac{π}{4}$,
所以A=$\frac{π}{6}$.
故答案為:$\frac{π}{6}$.

點(diǎn)評(píng) 本題主要考查了同角平方關(guān)系及正弦定理在求三角形中的應(yīng)用,解題時(shí)要注意大邊對(duì)大角的應(yīng)用,不要產(chǎn)生A角的多解,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知等差數(shù)列{an}滿足a3=7,a5+a7=26,數(shù)列{an}的前n項(xiàng)和為Sn
(Ⅰ)求an;
(Ⅱ)設(shè)bn=$\frac{1}{{S}_{n}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(1)求函數(shù)y=2x+4$\sqrt{2-x}$,x∈[0,2]的值域;
(2)化簡:$\frac{\sqrt{1-2sin40°cos40°}}{cos40°-\sqrt{1-co{s}^{2}40°}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)函數(shù)f(x)=x3-6x+5,x∈R.
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)求曲線f(x)過點(diǎn)(1,0)的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.給出下列函數(shù):
①y=x+$\frac{1}{x}$;
②y=lgx+logx10(x>0,x≠1);
③y=sinx+$\frac{1}{sinx}$(0<x≤$\frac{π}{2}$);
④y=$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$;
⑤y=$\frac{1}{2}$(x+$\frac{1}{x-2}$)(x>2).
其中最小值為2的函數(shù)序號(hào)是③⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.$\underset{lim}{x→0}$$\frac{atanx+b(1-cosx)}{cln(1-2x)+d(1-{e}^{-{x}^{2}})}$=2,其中a2+c2≠0,則必有( 。
A.b=4dB.b=-4dC.a=4cD.a=-4c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知全集U=R,函數(shù)y=$\sqrt{x-2}$+$\sqrt{x+1}$的定義域?yàn)榧螦,函數(shù)y=-x2+2x+2的值域?yàn)榧螧.
(1)求集合A∩B,A∪B.
(2)求集合(∁UA)∩(∁UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)圓${C_1}:{(x+\sqrt{5})^2}+{y^2}$=4與圓${C_2}:{(x-\sqrt{5})^2}+{y^2}$=4,動(dòng)圓C與圓C1外切,與圓C2內(nèi)切.
(1)求動(dòng)圓C的圓心軌跡L的方程;
(2)已知點(diǎn)$M(2\sqrt{5},1)$,P為L上動(dòng)點(diǎn),求|MP|+|C2P|最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知x=ln π,y=log52,z=log${\;}_{\frac{1}{2}}}$e則( 。
A.x<y<zB.z<x<yC.z<y<xD.y<z<x

查看答案和解析>>

同步練習(xí)冊答案