2.如圖是某四棱錐的三視圖,則該幾何體的表面積等于( 。
A.34+6$\sqrt{5}$B.44+12$\sqrt{5}$C.34+6$\sqrt{3}$D.32+6$\sqrt{5}$

分析 一個底面是矩形的四棱錐,矩形的長和寬分別是6,2,底面上的高與底面交于底面一條邊的中點,四棱錐的高是4,根據(jù)勾股定理做出三角形的高,寫出所有的面積表示式,得到結(jié)果.

解答 解:由三視圖知,這是一個底面是矩形的四棱錐,
矩形的長和寬分別是6,2
底面上的高與底面交于底面一條邊的中點,
四棱錐的高是4,
∴四棱錐的表面積是2×6+2×$\frac{1}{2}×2×5$+6×$4×\frac{1}{2}$+$\frac{1}{2}×6×2\sqrt{5}$=34+6$\sqrt{5}$,
故選A.

點評 本題考查由三視圖求幾何體的表面積,考查由三視圖還原幾何體的直觀圖,考查平面圖形面積的求法,本題是一個基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.向量$\overrightarrow m=({λ+1,1}),\overrightarrow n=({λ+3,2})$,若$\overrightarrow m∥\overrightarrow n$,則λ=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知曲線C的方程是:x2+y2-2x-4y+m=0,點P(3,-1).
(1)若m=1,直線l過點P且與曲線C只有一個公共點,求直線l的方程;
(2)若曲線C表示圓且被直線x+2y+5=0截得的弦長為2$\sqrt{5}$,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知數(shù)列{an}的前n項和Sn=2n-1,則an=$\left\{\begin{array}{l}{1,n=1}\\{2,n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖所示,四棱錐VABCD的底面為邊長等于2cm的正方形,頂點V與底面正方形中心的連線為棱錐的高,側(cè)棱長VC=4cm,求這個正四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓C的一個頂點為A(0,-1),焦點在x軸上,其右焦點到直線$x-y+2\sqrt{2}=0$的距離為3.
(1)求橢圓C的方程;
(2)設(shè)直線l:y=x+m,是否存在實數(shù)m,使直線l與橢圓C有兩個不同的交點M,N,且|AM|=|AN|,若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)$f(x)=\left\{\begin{array}{l}|{ln({-x})}|,x<0\\{x^2}-4x+3,x≥0\end{array}\right.$,若H(x)=f2(x)-2bf(x)+3有8個不同的零點,則實數(shù)b的取值范圍為($\sqrt{3}$,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知△ABC的面積為1,∠A的平分線交對邊BC于D,AB=2AC,且AD=kAC,k∈R,則當k=$\frac{2\sqrt{10}}{5}$時,邊BC的長度最短.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.執(zhí)行如圖框圖,已知輸出的s∈[0,4],若輸入的t∈[m,n],則實數(shù)n-m的最大值為(  
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案