17.如圖所示,四棱錐VABCD的底面為邊長等于2cm的正方形,頂點(diǎn)V與底面正方形中心的連線為棱錐的高,側(cè)棱長VC=4cm,求這個(gè)正四棱錐的體積.

分析 連結(jié)AC,BD,交于點(diǎn)O,連結(jié)VO,先求出高VO,由此能求出這個(gè)正四棱錐的體積.

解答 解:連結(jié)AC,BD,交于點(diǎn)O,連結(jié)VO,
∵四棱錐VABCD的底面為邊長等于2cm的正方形,
頂點(diǎn)V與底面正方形中心的連線為棱錐的高,
側(cè)棱長VC=4cm,
∴AO=$\frac{1}{2}\sqrt{4+4}$=$\sqrt{2}$(cm),
∴VO=$\sqrt{16-2}$=$\sqrt{14}$(cm),
∴這個(gè)正四棱錐的體積:
V=$\frac{1}{3}{S}_{正方形ABCD}×VO$=$\frac{1}{3}×2×2×\sqrt{14}$=$\frac{4\sqrt{14}}{3}$(cm3).

點(diǎn)評 本題考查四棱錐的體積的求法,考查推理論證能力、空間思維能力、運(yùn)算求解能力,考查轉(zhuǎn)化化歸思想、數(shù)形結(jié)合思想,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓W:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右兩個(gè)焦點(diǎn)為F1,F(xiàn)2,且|F1F2|=2,橢圓上一動(dòng)點(diǎn)P滿足|PF1|+|PF2|=2$\sqrt{3}$.
(Ⅰ)求橢圓W的標(biāo)準(zhǔn)方程及離心率;
(Ⅱ)如圖,過點(diǎn)F1作直線l1與橢圓W交于點(diǎn)A,C,過點(diǎn)F2作直線l2⊥l1,且l2與橢圓W交于點(diǎn)B,D,l1與l2交于點(diǎn)E,試求四邊形ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.若函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x≤0時(shí),f(x)=x2+2x.
(1)寫出函數(shù)f(x)(x∈R)的解析式.
(2)若函數(shù)g(x)=f(x)+(4-2a)x+2(x∈[1,2]),求函數(shù)g(x)的最小值h(a).
(3)若f(x)≤-2at+4對于任意的x∈[-1,1],a∈[-1,1]恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知命題P:對?x∈[2,4],不等式x2≥k恒成立.命題Q:?x∈R,使x2-x+k=0成立.如果命題“¬P”為假,命題“P∧Q”為假,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)f(x)=ex-ax(a>0).
(1)當(dāng)a=1時(shí),求f(x)的最小值;
(2)若對一切x∈R,f(x)≥1恒成立,求a的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖是某四棱錐的三視圖,則該幾何體的表面積等于( 。
A.34+6$\sqrt{5}$B.44+12$\sqrt{5}$C.34+6$\sqrt{3}$D.32+6$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=lnx+ax2-3x,且x=1在處函數(shù)取得極值.
(1)求f(x)的單調(diào)區(qū)間;   
(2)若g(x)=x2-2x-1(x>0)
①證明:g(x)的圖象不能在y=f(x)圖象的下方;
②證明不等式(2n+1)2>4ln(n!)恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)函數(shù)f(x)=$\frac{1}{3}$x-lnx(x>0),則函數(shù)f(x)( 。
A.在區(qū)間(0,1)內(nèi)有零點(diǎn),在區(qū)間(1,+∞)內(nèi)無零點(diǎn)
B.在區(qū)間(0,1)內(nèi)有零點(diǎn),在區(qū)間(1,+∞)內(nèi)有零點(diǎn)
C.在區(qū)間(0,3),(3,+∞)均無零點(diǎn)
D.在區(qū)間(0,3),(3,+∞)均有零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.極坐標(biāo)方程3ρsin2θ+cosθ=0表示的曲線是( 。
A.拋物線B.雙曲線C.橢圓D.

查看答案和解析>>

同步練習(xí)冊答案