14.已知函數(shù)$f(x)=\left\{\begin{array}{l}|{ln({-x})}|,x<0\\{x^2}-4x+3,x≥0\end{array}\right.$,若H(x)=f2(x)-2bf(x)+3有8個(gè)不同的零點(diǎn),則實(shí)數(shù)b的取值范圍為($\sqrt{3}$,2].

分析 作函數(shù)$f(x)=\left\{\begin{array}{l}|{ln({-x})}|,x<0\\{x^2}-4x+3,x≥0\end{array}\right.$的圖象,從而可化為x2-2bx+3=0在(0,3]上有兩個(gè)不同的解;而m(x)=$\frac{x}{2}$+$\frac{3}{2x}$在(0,$\sqrt{3}$)上是減函數(shù),在( $\sqrt{3}$,3]上是增函數(shù);從而解得.

解答 解:作函數(shù)$f(x)=\left\{\begin{array}{l}|{ln({-x})}|,x<0\\{x^2}-4x+3,x≥0\end{array}\right.$的圖象如下,
,∵H(x)=[f(x)]2-2bf(x)+3有8個(gè)不同的零點(diǎn),
∴g(x)=x2-2bx+3在(0,3]上有兩個(gè)零點(diǎn);
即x2-2bx+3=0在(0,3]上有兩個(gè)不同的解;
故b=$\frac{{x}^{2}+3}{2x}$=$\frac{x}{2}$+$\frac{3}{2x}$在(0,3]上有兩個(gè)不同的解;
而m(x)=$\frac{x}{2}$+$\frac{3}{2x}$在(0,$\sqrt{3}$)上是減函數(shù),在($\sqrt{3}$,3]上是增函數(shù);
而m($\sqrt{3}$)=$\sqrt{3}$,m(3)=2;
故$\sqrt{3}$<b≤2,
故答案為:($\sqrt{3}$,2].

點(diǎn)評(píng) 本題考查了分類討論的思想應(yīng)用及數(shù)形結(jié)合的思想應(yīng)用,同時(shí)考查了函數(shù)的零點(diǎn)與方程的根的關(guān)系應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.sin20°sin10°-cos10°sin70°=( 。
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知命題P:對(duì)?x∈[2,4],不等式x2≥k恒成立.命題Q:?x∈R,使x2-x+k=0成立.如果命題“¬P”為假,命題“P∧Q”為假,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.如圖是某四棱錐的三視圖,則該幾何體的表面積等于(  )
A.34+6$\sqrt{5}$B.44+12$\sqrt{5}$C.34+6$\sqrt{3}$D.32+6$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=lnx+ax2-3x,且x=1在處函數(shù)取得極值.
(1)求f(x)的單調(diào)區(qū)間;   
(2)若g(x)=x2-2x-1(x>0)
①證明:g(x)的圖象不能在y=f(x)圖象的下方;
②證明不等式(2n+1)2>4ln(n!)恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若函數(shù)f(x)在區(qū)間A上,對(duì)?a,b,c∈A,f(a),f(b),f(c)為一個(gè)三角形的三邊長(zhǎng),則稱函數(shù)f(x)為“三角形函數(shù)”.已知函數(shù)f(x)=xlnx+m在區(qū)間$[{\frac{1}{e^2},e}]$上是“三角形函數(shù)”,則實(shí)數(shù)m的取值范圍為($\frac{{e}^{2}+2}{e}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)函數(shù)f(x)=$\frac{1}{3}$x-lnx(x>0),則函數(shù)f(x)( 。
A.在區(qū)間(0,1)內(nèi)有零點(diǎn),在區(qū)間(1,+∞)內(nèi)無(wú)零點(diǎn)
B.在區(qū)間(0,1)內(nèi)有零點(diǎn),在區(qū)間(1,+∞)內(nèi)有零點(diǎn)
C.在區(qū)間(0,3),(3,+∞)均無(wú)零點(diǎn)
D.在區(qū)間(0,3),(3,+∞)均有零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.對(duì)?x∈(0,+∞)不等式(2x-2a+ln$\frac{x}{a}$)(-2x2+ax+5)≤0恒成立,則實(shí)數(shù)a的取值集合為{$\sqrt{5}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知α,β,γ是三個(gè)不同的平面,l1,l2是兩條不同的直線,下列命題是真命題的是( 。
A.若α⊥γ,β⊥γ,則α∥βB.若l1∥α,l1⊥β,則α∥β
C.若α∥β,l1∥α,l2∥β,則l1∥l2D.若α⊥β,l1⊥α,l2⊥β,則l1⊥l2

查看答案和解析>>

同步練習(xí)冊(cè)答案