6.小晶用圓、三角形、正方形按一定規(guī)律畫圖,前八個圖形如圖所示,則猜測第2017個圖形中共含有的正方形個數(shù)為( 。
A.670B.672C.335D.336

分析 通過觀察,分析、歸納并發(fā)現(xiàn)其中的規(guī)律,并應(yīng)用發(fā)現(xiàn)的規(guī)律解決問題.

解答 解:通過觀察發(fā)現(xiàn)一個三角形等于兩個圓,一個正方形等于三個三角形,即一個正方形等于六個圓.
又2017=336×6+1,故應(yīng)有336個正方形,
故選D.

點評 本題考查了圖形的變化類問題,解題的關(guān)鍵是仔細的觀察圖形并從中發(fā)現(xiàn)規(guī)律,然后利用發(fā)現(xiàn)的規(guī)律解題即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.先后拋擲一枚質(zhì)地均勻的骰子,得到的點數(shù)分別為a,b,那么2a≥5b的概率是$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.某程序框圖如圖所示,該程序運行結(jié)束時輸出的S的值為( 。
A.1007B.1008C.2016D.3024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某考點2016年參加教師資格考試的人群由兩部分組成,分別為在職人員與社會人員,現(xiàn)利用隨機抽樣的方法抽取50名參考人員研究它們的考試成績,并將考試成績和頻數(shù)統(tǒng)計如下表所示:
組別[65,75)[75,85)[85,95)[95,105)[105,115)[115,150)
頻數(shù)341315105
將頻率作為概率,解決下列問題:
(1)在這50名參考人員中任取一位,求分數(shù)不低于105分的概率;
(2)為了進一步了解這些參考人員的得分情況,再從分數(shù)在[65,75)的參考人員A,B,C中選出2位,從分數(shù)在[115,150)中的參考人員D,E,F(xiàn),G,H中選出1位進行研究,求A和D同時被選到的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.元朝時,著名數(shù)學(xué)家朱世杰在《四元玉鑒》中有一首詩:“我有一壺酒,攜著游春走,與店添一倍,逢友飲一斗,店友經(jīng)三處,沒了壺中酒,借問此壺中,當原多少酒?”用程序框圖表達如圖所示,即最終輸出的x=0,問一開始輸入的x=( 。
A.$\frac{3}{4}$B.$\frac{7}{8}$C.$\frac{15}{16}$D.$\frac{31}{32}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知A,B分別為橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)在x軸正半軸,y軸正半軸上的頂點,原點O到直線AB的距離為$\frac{{2\sqrt{21}}}{7}$,且|AB|=$\sqrt{7}$.
(1)求橢圓C的離心率;
(2)直線l:y=kx+m(-1≤k≤2)與圓x2+y2=2相切,并與橢圓C交于M,N兩點,求|MN|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某連鎖經(jīng)營公司所屬5個零售店某月的銷售額和利潤額資料如表:
商店名稱ABCDE
銷售額x(千萬元)35679
利潤額y(千萬元)23345
(Ⅰ)用最小二乘法計算利潤額y對銷售額x的回歸直線方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(Ⅱ)當銷售額為4(千萬元)時,估計利潤額的大。
(注:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n•{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在△ABC中,|$\overrightarrow{BC}$|=4,△ABC的內(nèi)切圓切BC于D點,且|$\overrightarrow{BD}$|-|$\overrightarrow{CD}$|=2$\sqrt{2}$,則頂點A的軌跡方程為$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{2}$=1(x>$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知直線l參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{3}+tcosθ\\ y=tsinθ\end{array}\right.(t為參數(shù),0≤θ<π)$,曲線C的極坐標方程為ρ2=$\frac{4}{1+{3sin}^{2}θ}$
(1)寫出曲線C的普通方程;
(2)若F1為曲線C的左焦點,直線l與曲線C交于A,B兩點,求|F1A|•|F1B|最小值.

查看答案和解析>>

同步練習(xí)冊答案