【題目】已知離心率為的橢圓焦點(diǎn)在軸上,且橢圓個(gè)頂點(diǎn)構(gòu)成的四邊形面積為,過(guò)點(diǎn)的直線與橢圓相交于不同的兩點(diǎn)、.
(1)求橢圓的方程;
(2)設(shè)為橢圓上一點(diǎn),且(為坐標(biāo)原點(diǎn)).求當(dāng)時(shí),實(shí)數(shù)的取值范圍.
【答案】(1) ;(2) .
【解析】試題分析:(1)由離心率率與面積,可求得。(2)由(1)橢圓方程為,設(shè)直線的方程為,由直線橢圓方程組方程組,再由判別式, ,這兩個(gè)不等式可求得參數(shù)k的范圍,再由的坐標(biāo)表示及點(diǎn)P在橢圓上,可求得與k的有關(guān)系,通過(guò)k的范圍求出的范圍。
試題解析:(1)設(shè)橢圓的方程為,由題意可知,得, ;
又頂點(diǎn)構(gòu)成四邊形的是菱形,面積,所以, ,橢圓方程為.
(2)設(shè)直線的方程為或, , , ,
當(dāng)的方程為時(shí), ,與題意不符.
當(dāng)的方程為時(shí),由題設(shè)可得、的坐標(biāo)是方程組的解.
消去得,所以,即,
則, , ,
因?yàn)?/span> ,所以 ,
解得,所以.
因?yàn)?/span>,即,
所以當(dāng)時(shí),由,得, ,
上述方程無(wú)解,所以此時(shí)符合條件的直線不存在:
當(dāng)時(shí), , ,
因?yàn)辄c(diǎn)在橢圓上,所以,
化簡(jiǎn)得,因?yàn)?/span>,所以,則.
綜上,實(shí)數(shù)的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)中xOy,圓C1:x2+y2=8,圓C2:x2+y2=18,點(diǎn)M(1,0),動(dòng)點(diǎn)A、B分別在圓C1和圓C2上,滿足,則的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,橢圓: 的離心率為,直線l:y=2上的點(diǎn)和橢圓上的點(diǎn)的距離的最小值為1.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 已知橢圓的上頂點(diǎn)為A,點(diǎn)B,C是上的不同于A的兩點(diǎn),且點(diǎn)B,C關(guān)于原點(diǎn)對(duì)稱,直線AB,AC分別交直線l于點(diǎn)E,F.記直線與的斜率分別為, .
① 求證: 為定值;
② 求△CEF的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)判斷的單調(diào)性并寫出證明過(guò)程;
(2)當(dāng)時(shí),關(guān)于x的方程在區(qū)間上有唯一實(shí)數(shù)解,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是公差為的等差數(shù)列,是公比為()的等比數(shù)列,記.
(1)令,求證:數(shù)列為等比數(shù)列;
(2)若,,數(shù)列前2項(xiàng)和為14,前8項(xiàng)和為857,求數(shù)列通項(xiàng)公式;
(3)在(2)的條件下,問(wèn):數(shù)列中是否存在四項(xiàng)、、、成等差數(shù)列?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知O為內(nèi)一點(diǎn),若分別滿足①;②;③;④(其中為中,角所對(duì)的邊).則O依次是的( )
A.內(nèi)心、重心、垂心、外心B.外心、垂心、重心、內(nèi)心
C.外心、內(nèi)心、重心、垂心D.內(nèi)心、垂心、外心、重心
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)等比數(shù)列{an}的公比為q,其前n項(xiàng)之積為Tn,并且滿足條件:a1>1,a2 016a2 017>1, .給出下列結(jié)論:(1)0<q<1;(2)a2 016a2 018-1>0;(3)T2 016是數(shù)列{Tn}中的最大項(xiàng);(4)使Tn>1成立的最大正整數(shù)n為4 031.其中正確的結(jié)論為( )
A. (2)(3) B. (1)(3)
C. (1)(4) D. (2)(4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABEF和四邊形ABCD均是直角梯形,∠FAB=∠DAB=90°,二面角FABD是直二面角,BE∥AF,BC∥AD,AF=AB=BC=2,AD=1.
(1)證明:在平面BCE上,一定存在過(guò)點(diǎn)C的直線l與直線DF平行;
(2)求二面角FCDA的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com