10.某學(xué)習(xí)小組20名學(xué)生一次數(shù)學(xué)考試成績(單位:分)頻率直方圖如圖所示,已知前三個矩形框垂直于橫軸的高度成等差數(shù)列.
(1)求頻率分布直方圖中a的值;
(2)分別求出成績落在[50,60)與[80,90)中的學(xué)生人數(shù);
(3)從成績在[50,60)與[80,90)中的學(xué)生中人選2人,求此2人的成績相差20分以上的概率.

分析 (1)由已知前三個長方形的高成等差數(shù)列知,第三個長方形的高為8a,再由頻率分布直方圖能求出a.
(2)由頻率分布直方圖,能求出成績落在[50,60)與[80,90)中的學(xué)生人數(shù).
(3)記成績落在 中的2人為A1,A2,成績落在 中的3人為B1,B2,B3,利用列舉法能求出這2人的成績相差20分以上的概率.

解答 解:(1)由已知前三個長方形的高成等差數(shù)列知,第三個長方形的高為8a,
于是由頻率分布直方圖得(2a+5a+8a+3a+2a)×10=1,解得a═0.005.…(2分)
(2)由頻率分布直方圖,知:
成績落在[50,60)中的學(xué)生人數(shù)為2×0.005×10×20=2,
成績落在[80,90)中的學(xué)生人數(shù)為3×0.005×10×20=3.…(4分)
(3)記成績落在 中的2人為A1,A2,成績落在 中的3人為B1,B2,B3,
則從成績在 與 中任選2人的基本事件共有10個:
(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),
(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3),…(7分)
其中2人的成績相差20分以上的基本事件有6個:
(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),
故這2人的成績相差20分以上的概率P=$\frac{6}{10}=\frac{3}{5}$.…(10分)

點評 本題考查等差數(shù)列、頻率分布直方圖的應(yīng)用,考查概率的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意列舉法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知sinx+$\sqrt{3}$cosx=$\frac{8}{5}$,則sin(x+$\frac{π}{3}$)=$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在△ABC中,a、b、c分別為角A、B、C所對的邊,且a=2,b=$\sqrt{6}$,B=$\frac{π}{3}$,則角A等于( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{3π}{4}$D.$\frac{π}{4}$或$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知拋物線C:y2=2x的焦點為F,A(x0,y0)是C上一點,|AF|=$\frac{3}{2}$x0,則x0=( 。
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若關(guān)于x的方程$\sqrt{-{x}^{2}+4x-3}$=mx+m-1有兩個不同的實數(shù)根,則實數(shù)m的取值范圍是( 。
A.(0,$\frac{3}{4}$)B.[$\frac{1}{2}$,$\frac{3}{4}$)C.($\frac{1}{4}$,$\frac{1}{2}$)D.[$\frac{1}{4}$,$\frac{3}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在等差數(shù)列{an}中,a4+a6=6,且a2=1,則公差d等于( 。
A.$\frac{2}{3}$B.$\frac{3}{5}$C.$\frac{6}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知拋物線C:y2=2px(p>0)經(jīng)過點(4,-4).
(1)若拋物線C上一動點M到準(zhǔn)線的距離為d,D(-1,3),求d+|MD|的最小值;
(2)若直線l與拋物線C交于A,B兩點,且線段AB的中點為N(2,$\frac{1}{3}$),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)命題p:?x0∈(-2,+∞),6+|x0|=5,命題q:?x∈(-∞,0),x2+$\frac{4}{{x}^{2}}$≥4.命題r:若a≥1,則函數(shù)f(x)=ax+cosx(x∈R)是增函數(shù).
(1)寫出命題r的否命題;
(2)判斷命題¬p:p∨r,p∧q的真假,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知點A(-3,0),B(1,0),線段AB是圓M的直徑.
(Ⅰ)求圓M的方程;
(Ⅱ)過點(0,2)的直線l與圓M相交于D,E兩點,且$|{DE}|=2\sqrt{3}$,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案