19.若二項式(3x-$\frac{1}{\root{3}{x}}$)n的展開式中各項系數(shù)之和為256.
(1)求展開式中二項式系數(shù)最大的項;
(2)求展開式中的常數(shù)項.

分析 (1)根據(jù)二項式展開式中各項系數(shù)和求出n的值,再計算展開式中二項式系數(shù)的最大項;
(2)利用二項展開式的通項公式,即可求出展開式的常數(shù)項.

解答 解:(1)因為二項式(3x-$\frac{1}{\root{3}{x}}$)n的展開式中各項系數(shù)之和為256,
所以(3-1)n=256,
解得n=8;…(3分)
則該展開式中共有9項,第5項系數(shù)最大;
二項式系數(shù)最大項為T5=${C}_{8}^{4}$•(3x)8-4•${(\root{3}{x})}^{4}$=5670${x}^{\frac{8}{3}}$;…(6分)
(2)二項展開式的通項公式為
Tr+1=${C}_{8}^{r}$•(3x)8-r•${(\root{3}{x})}^{r}$=${C}_{8}^{r}$•38-r•${x}^{8-\frac{4}{3}r}$,
令8-$\frac{4}{3}$r=0,解得r=6;…(10分)
因此展開式的常數(shù)項為
T7=${C}_{8}^{6}$•38-6=252.…(12分)

點評 本題考查了二項式展開式中各項系數(shù)和以及展開式中二項式系數(shù)、通項公式的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.用“二分法”求函數(shù)f(x)=x3-3x+1的一個零點時,若區(qū)間[1,2]作為計算的初始區(qū)間,則下一個區(qū)間應(yīng)取為(1.5,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=Asin(ωx+φ)(φ|<$\frac{π}{2}$)的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)求f(x)的單調(diào)減區(qū)間
(3)當(dāng)x∈[0,$\frac{π}{12}$]時,求函數(shù)f(x)的最大值,并且求使f(x)取得最大值時x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.復(fù)數(shù)z=$\frac{-8+i}{i}$在復(fù)平面內(nèi)對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.由變量x與y相對應(yīng)的一組數(shù)據(jù)(3,y1),(5,y2),(7,y3),(12,y4),(13,y5)得到的線性回歸方程為$\stackrel{∧}{y}$=$\frac{1}{2}$x+20,則$\sum_{i=1}^{5}{y}_{i}$=( 。
A.25B.125C.120D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若直線y=a與正弦曲線y=sinx,x∈[0,2π]的圖象只有一個交點,則a=±1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若函數(shù)f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$(a+2)x2+(2a+1)x+1沒有極值點,則實數(shù)a的取值范圍是[0,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知兩矩形ABCD與ADEF所在的平面互相垂直,AB=1,若將△DEF沿直線FD翻折,使得點E落在邊BC上(即點P),則當(dāng)AD取最小值時,邊AF的長是$\sqrt{2}$;此時四面體F-ADP的外接球的半徑是$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.半徑為100mm的圓上,有一段弧長為300mm,此弧所對的圓心角的弧度數(shù)為3.

查看答案和解析>>

同步練習(xí)冊答案