3.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+t}\\{y=a-2t}\end{array}\right.$(t為參數(shù))在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),極軸與x軸的非負(fù)半軸重合)中,圓C的方程為ρ=4cosθ.若直線l被圓C截得的弦長(zhǎng)為$\sqrt{11}$,求實(shí)數(shù)a的值.

分析 把參數(shù)方程與極坐標(biāo)方程分別化為直角坐標(biāo)方程,求出圓心到直線的距離,利用弦長(zhǎng)公式即可得出.

解答 解:直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+t}\\{y=a-2t}\end{array}\right.$(t為參數(shù)),
消去參數(shù)t可得:直線的直角坐標(biāo)系方程是:2x+y-a-2=0,
圓C的方程為ρ=4cosθ,即ρ2=4ρcosθ,
直角坐標(biāo)系方程是:x2+y2=4x,配方為(x-2)2+y2=4,可得圓心(2,0),半徑r=2.
設(shè)圓心到直線l的距離為d,d=$\sqrt{4-(\frac{\sqrt{11}}{2})^{2}}$=$\frac{\sqrt{5}}{2}$.
又d=$\frac{|4-a-2|}{\sqrt{5}}$=$\frac{|2-a|}{\sqrt{5}}$=$\frac{\sqrt{5}}{2}$,
∴a=2$±\frac{5}{2}$,∴a=$\frac{9}{2}$,或$-\frac{1}{2}$.

點(diǎn)評(píng) 本題考查了極坐標(biāo)化為直角坐標(biāo)、參數(shù)方程化為普通方程、點(diǎn)到直線的距離公式、直線與圓相交弦長(zhǎng)問題,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在三棱錐P-ABC中,△PAB和△CAB都是以AB為斜邊的等腰直角三角形.
(1)證明:AB⊥PC;
(2)若AB=2PC=$\sqrt{2}$,求三棱錐P-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖所示,已知AB為圓O的直徑,點(diǎn)D為線段AB上一點(diǎn),且AD=$\frac{1}{3}$DB,點(diǎn)C為圓O上一點(diǎn),且BC=$\sqrt{3}$AC.點(diǎn)P在圓O所在平面上的正投影為點(diǎn)D,PD=DB.
(1)再BC上找一點(diǎn)E,使BC⊥平面PDE,并求出$\frac{CE}{BE}$的值;
(2)求平面PAC與平面PBC所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.直角梯形的一條對(duì)角線把梯形分成兩個(gè)三角形,其中一個(gè)是邊長(zhǎng)為30的等邊三角形,則這個(gè)梯形的中位線長(zhǎng)是(  )
A.15B.22.5C.45D.90

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=|x-2|-|x+1|.
(1)解不等式f(x)>1;
(2)當(dāng)x>0時(shí),函數(shù)g(x)=$\frac{a{x}^{2}-x+1}{x}$(a>0)的最小值總大于函數(shù)f(x),試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.求函數(shù)y=($\frac{1}{2}$)-x2+4x-3單調(diào)區(qū)間單調(diào)減區(qū)間為(-∞,2),單調(diào)增區(qū)間為[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=ax2+xlnx+b,(a,b∈R)的圖象在(1,f(1))處的切線方程為3x-y-4=0.
(1)求實(shí)數(shù)a,b的值;
(2)若存在k∈Z,使f(x)>k恒成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=x2-2|x|+3.
(1)求函數(shù)f(x)的單調(diào)區(qū)間和值域;
(2)若方程f(x)=k有四個(gè)解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖所示的幾何體中,AD⊥平面APB,AD∥BC,AP⊥PB.
(1)求證:平面PAD⊥平面PBC;
(2)若AB=BC=2AD=2AP=2,點(diǎn)Q在線段AB上,且AQ=$\frac{1}{4}$AB,求二面角C-PQ-D的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案