3.拋物線x=ay2(a≠0)的準(zhǔn)線方程是$x=-\frac{1}{4a}$.

分析 直接利用拋物線方程,化簡(jiǎn)求解即可.

解答 解:拋物線x=ay2(a≠0)的標(biāo)準(zhǔn)方程為:y2=$\frac{1}{a}$x,準(zhǔn)線方程:$x=-\frac{1}{4a}$;
故答案為:$x=-\frac{1}{4a}$;

點(diǎn)評(píng) 本題考查拋物線的簡(jiǎn)單性質(zhì)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)$f(x)=x+\frac{a}{x}+lnx$在區(qū)間(1,2)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍為(-∞,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.(1)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}}$-(-9.6)0-(3$\frac{3}{8}$)${\;}^{\frac{2}{3}}}$+(1.5)2+($\sqrt{2}$×$\root{4}{3}$)4;
(2)$\frac{{1g\sqrt{27}+1g8-1g\sqrt{1000}}}{{\frac{1}{2}1g0.3+1g2}}+{(\sqrt{5}-2)^0}+{0.027^{-\frac{1}{3}}}×{(-\frac{1}{3})^{-2}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.直線mx+(2m-1)y=0和直線3x+my+3=0垂直,則實(shí)數(shù)m的值為( 。
A.1B.0C.2D.-1或0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.拋物線y2=4x,直線l過焦點(diǎn)且與拋物線交于A(x1,y1),B(x2,y2)兩點(diǎn),x1+x2=3,則AB中點(diǎn)到y(tǒng)軸的距離為( 。
A.3B.$\frac{3}{2}$C.$\frac{5}{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2},x>1}\\{(4-\frac{a}{2})x-1,x≤1}\end{array}\right.$在(-∞,+∞)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍為( 。
A.[4,8 )B.(4,8]C.(4,8)D.(8,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)P表示x+$\frac{4}{x+1}$>4的解集;Q表示不等式|x-1|+|x-2a|>1對(duì)任意x∈R恒成立的a的集合,求P∩Q.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.若f(x)是定義在(0,+∞)上的增函數(shù),且對(duì)于任意x>0滿足f ($\frac{x}{y}$)=f(x)-f (y).
(1)求f(1)的值;
(2)若f(6)=1,試求解不等式f(x+5)-f ($\frac{1}{x}$)<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)U={不大于10的正整數(shù)},A={10以內(nèi)的質(zhì)數(shù)},B={1,3,5,7,9},則∁UA∩∁UB是(  )
A.{2,4,6,8,9}B.{2,4,6,8,9,10}C.{1,2,6,8,9,10}D.{4,6,8,10}

查看答案和解析>>

同步練習(xí)冊(cè)答案