分析 (1)求出導函數(shù)利用f′(2)=0,得a;在x=2處取得極小值-$\frac{4}{3}$.得b.然后求解f(x)的單調(diào)遞增區(qū)間.
(2)求出函數(shù)的最值,要使f(x)≤m2+m+$\frac{10}{3}$在[-4,3]上恒成立,只需m2+m+$\frac{10}{3}$≥$\frac{28}{3}$,求解即可.
解答 解:(1)f′(x)=x2+a,由f′(2)=0,得a=-4;
再由f(2)=-$\frac{4}{3}$,得b=4.
所以f(x)=$\frac{1}{3}$x3-4x+4,f′(x)=x2-4.
令f′(x)=x2-4>0,得x>2或x<-2.
所以f(x)的單調(diào)遞增區(qū)間為(-∞,-2),(2,+∞).
(2)因為f(-4)=-$\frac{4}{3}$,f(-2)=$\frac{28}{3}$,f(2)=-$\frac{4}{3}$,
f(3)=1,所以函數(shù)f(x)在[-4,3]上的最大值為$\frac{28}{3}$.
要使f(x)≤m2+m+$\frac{10}{3}$在[-4,3]上恒成立,
只需m2+m+$\frac{10}{3}$≥$\frac{28}{3}$,解得m≥2或m≤-3.
所以實數(shù)m的取值范圍是(-∞,-3]∪[2,+∞).
點評 本題考查函數(shù)的導數(shù)的應(yīng)用,函數(shù)的最值以及函數(shù)的單調(diào)性的求解,考查分析問題解決問題的能力.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{7}{5}$ | B. | $\frac{5}{7}$ | C. | $\frac{4}{5}$ | D. | $\frac{6}{7}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 240 | B. | 260 | C. | 320 | D. | -320 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | 6 | C. | -3 | D. | -6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | P>Q | B. | P=Q | C. | P<Q | D. | 由a的取值確定 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com