12.定義在區(qū)間(0,$\frac{π}{2}$)上的函數(shù)f(x)滿足tanx•f′(x)<f(x),則下列選項(xiàng)中正確的是( 。
A.f($\frac{π}{6}$)sin1<$\frac{1}{2}$f(1)B.f($\frac{π}{6}$)sin1=$\frac{1}{2}$f(1)
C.f($\frac{π}{6}$)sin1>$\frac{1}{2}$f(1)D.無(wú)法確定f($\frac{π}{6}$)sin1與$\frac{1}{2}$f(1)的大小

分析 構(gòu)造函數(shù),利用函數(shù)的單調(diào)性判斷求解即可.

解答 解:在區(qū)間(0,$\frac{π}{2}$)上的函數(shù)f(x)滿足tanx•f′(x)<f(x),
可得:sinx•f′(x)-cosxf(x)<0,
令h(x)=$\frac{f(x)}{sinx}$,可得h′(x)=$\frac{sinxf′(x)-cosxf(x)}{si{n}^{2}x}$<0,所以函數(shù)h(x)=$\frac{f(x)}{sinx}$是減函數(shù);
所以$\frac{f(1)}{sin1}<\frac{f(\frac{π}{6})}{sin\frac{π}{6}}$,即f($\frac{π}{6}$)sin1>$\frac{1}{2}$f(1).
故選:C.

點(diǎn)評(píng) 本題考查函數(shù)的單調(diào)性的應(yīng)用,考查構(gòu)造法以及轉(zhuǎn)化思想的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,在四棱錐P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=AB=2,點(diǎn)E是PB的中點(diǎn),點(diǎn)F在邊BC上移動(dòng).
(Ⅰ)若F為BC中點(diǎn),求證:EF∥平面PAC;
(Ⅱ)求證:AE⊥PF;
(Ⅲ)若二面角E-AF-B的余弦值等于$\frac{\sqrt{11}}{11}$,求$\frac{BF}{BC}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.定義:橢圓上一點(diǎn)與兩焦點(diǎn)構(gòu)成的三角形為橢圓的焦點(diǎn)三角形,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距為4$\sqrt{5}$,焦點(diǎn)三角形的周長(zhǎng)為4$\sqrt{5}$+12,則橢圓C的方程是$\frac{{x}^{2}}{36}+\frac{{y}^{2}}{16}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)F1,F(xiàn)2分別為橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右兩焦點(diǎn),若橢圓C上的點(diǎn)A(0,$\sqrt{3}$)到F1,F(xiàn)2兩點(diǎn)的距離之和為4,
(1)求橢圓C的方程;
(2)求橢圓C的短軸長(zhǎng)和焦距.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.$\overrightarrow{a}$,$\overrightarrow$均是非零向量,則使得|$\overrightarrow{a}$|-|$\overrightarrow$|=|$\overrightarrow{a}$+$\overrightarrow$|成立的一個(gè)充分不必要條件是( 。
A.$\overrightarrow{a}$⊥$\overrightarrow$B.$\overrightarrow{a}$∥$\overrightarrow$C.$\overrightarrow{a}$=-2$\overrightarrow$D.$\overrightarrow{a}$=2$\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知$f(α)=\frac{{cos(\frac{π}{2}+α)•cos(2π-α)•sin(\frac{3π}{2}-α)}}{{sin(π-α)•sin(\frac{3π}{2}+α)}}$.
(1)化簡(jiǎn)f(α);
(2)若α是第三象限角,且$cos(α+\frac{π}{2})=\frac{1}{5}$,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.雙曲線x2-2y2=3的漸近線方程是y=$±\frac{\sqrt{2}}{2}x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知復(fù)數(shù)$z=\frac{5}{2i-1}$(i為虛數(shù)單位),則z的共軛復(fù)數(shù)為( 。
A.-1-2iB.-1+2iC.2-iD.2+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知$A=\left\{{x|{{log}_{\frac{1}{2}}}x≥2}\right\}$,$B=\left\{{x|{3^{-{x^2}+x+6}}≥1}\right\}$,求A∩B.

查看答案和解析>>

同步練習(xí)冊(cè)答案