分析 (1)利用誘導公式化簡函數(shù)解析式為f(x)=2sin(2x-$\frac{π}{4}$),利用三角函數(shù)周期公式可求最小正周期,利用$2kπ-\frac{π}{2}≤2x-\frac{π}{4}≤2kπ+\frac{π}{2}$,可求函數(shù)的單調增區(qū)間.
(2)利用兩角和與差的余弦函數(shù)公式化簡可得2cosβcosα=0,結合角的范圍可求$β=\frac{π}{2}$,代入即可得解.
解答 解:(1)因為$f(x)=sin(2x+\frac{7π}{4}-2π)+sin(2x-\frac{3π}{4}+\frac{π}{2})$=$sin(2x-\frac{π}{4})+sin(2x-\frac{π}{4})=2sin(2x-\frac{π}{4})$,
所以T=π,
由$2kπ-\frac{π}{2}≤2x-\frac{π}{4}≤2kπ+\frac{π}{2}$,得單調增區(qū)間為$[{kπ-\frac{π}{8},kπ+\frac{3π}{8}}]$,k∈Z.
(2)∵$cos(β-α)=\frac{4}{5}$,$cos(β+α)=-\frac{4}{5}$,
∴$cosβcosα+sinβsinα=\frac{4}{5}$,$cosβcosα-sinβsinα=-\frac{4}{5}$,
兩式相加,得2cosβcosα=0,
∵$0<α<β≤\frac{π}{2}$,
∴$β=\frac{π}{2}$,
由(1)知$f(β)=2sin(2β-\frac{π}{4})=\sqrt{2}$.
點評 本題主要考查了誘導公式,兩角和與差的余弦函數(shù)公式在三角函數(shù)化簡求值中的應用,考查了正弦函數(shù)的圖象和性質及三角函數(shù)周期公式的應用,考查了轉化思想,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com