3.已知函數(shù)y=$\frac{{2}^{x+1}}{{2}^{x}+1}$與函數(shù)y=$\frac{x+1}{x}$的圖象共有k(k∈N*)個(gè)公共點(diǎn),A1(x1,y1),A2(x2,y2),…,Ak(xk,yk),則$\sum_{i=1}^{k}$(xi+yi)=2.

分析 f(x)關(guān)于(0,1)對(duì)稱(chēng),同理g(x)=$\frac{x+1}{x}$關(guān)于(0,1)對(duì)稱(chēng),如圖所示,兩個(gè)圖象有且只有兩個(gè)交點(diǎn),即可得出結(jié)論.

解答 解:由題意,函數(shù)f(x)=$\frac{{2}^{x+1}}{{2}^{x}+1}$=2-$\frac{2}{{2}^{x}+1}$,
f(-x)+f(x)=2,∴f(x)關(guān)于(0,1)對(duì)稱(chēng),同理g(x)=$\frac{x+1}{x}$關(guān)于(0,1)對(duì)稱(chēng),
如圖所示,兩個(gè)圖象有且只有兩個(gè)交點(diǎn),
∴$\sum_{i=1}^{k}$(xi+yi)=2,
故答案為2.

點(diǎn)評(píng) 本題考查函數(shù)圖象的對(duì)稱(chēng)性,考查數(shù)形結(jié)合的數(shù)學(xué)思想,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知f(x)=$\left\{\begin{array}{l}{{a}^{x},x>1}\\{(2-\frac{a}{2})x+2,x≤1}\end{array}\right.$是(-∞,+∞)上的增函數(shù),那么a的取值范圍是[$\frac{8}{3}$,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)函數(shù)f(x)=|x-1|+|x-a|
(1)若a=-1,解不等式f(x)≥3;
(2)若不等式f(x)≥3對(duì)一切x∈R恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)$f(x)=sin(2x+\frac{7π}{4})+cos(2x-\frac{3π}{4})$,x∈R.
(1)求f(x)的最小正周期和單調(diào)增區(qū)間;
(2)已知$cos(β-α)=\frac{4}{5}$,$cos(β+α)=-\frac{4}{5}$,$0<α<β≤\frac{π}{2}$,求f(β).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知A(0,2),B(3,1)是橢圓G:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0)$上的兩點(diǎn).
(1)求橢圓G的離心率;
(2)已知直線l過(guò)點(diǎn)B,且與橢圓G交于另一點(diǎn)C(不同于點(diǎn)A),若以BC為直徑的圓經(jīng)過(guò)點(diǎn)A,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.變量x,y滿足約束條件$\left\{\begin{array}{l}{x+y-2≥0}\\{x-y-2≤0}\\{y≤1}\end{array}\right.$,則目標(biāo)函數(shù)z=x+3y的最小值為( 。
A.2B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.所有真約數(shù)(除本身之外的正約數(shù))的和等于它本身的正整數(shù)叫做完全數(shù)(也稱(chēng)為完備數(shù)、玩美數(shù)),如6=1+2+3;28=1+2+4+7+14;496=1+2+4+8+16+31+62+124+248,此外,它們都可以表示為2的一些連續(xù)正整數(shù)次冪之和,如6=21+22,28=22+23+24,…,按此規(guī)律,8128可表示為26+27+…+212

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.在數(shù)字1、2、3、4中隨機(jī)選兩個(gè)數(shù)字,則選中的數(shù)字中至少有一個(gè)是偶數(shù)的概率為$\frac{5}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知向量$\vec a,\vec b$滿足$|\vec a|=2$,$|\vec b|=\sqrt{3}$,且$\vec a$與$\vec b$夾角為30°,那么$\vec a•\vec b$等于(  )
A.1B.$\sqrt{3}$C.3D.$3\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案