12.定義在R上的偶函數(shù)f(x)的導(dǎo)函數(shù)為f'(x),若對(duì)任意的實(shí)數(shù)x,都有2f(x)+xf'(x)<2恒成立,則使x2f(x)-4f(2)<x2-4成立的實(shí)數(shù)x的取值范圍是( 。
A.(-∞,-2)∪(2,+∞)B.(-2,0)∪(0,2)C.{x|x≠±2}D.(-2,2)

分析 根據(jù)已知構(gòu)造合適的函數(shù),對(duì)函數(shù)求導(dǎo),根據(jù)函數(shù)的單調(diào)性,求出函數(shù)的取值范圍,并根據(jù)偶函數(shù)的性質(zhì):對(duì)稱(chēng)性,求出x<0的取值范圍.

解答 解:當(dāng)x>0時(shí),由2f(x)+xf′(x)-2<0可知:兩邊同乘以x得:
2xf(x)-x2f′(x)-2x<0
設(shè):g(x)=x2f(x)-x2
則g′(x)=2xf(x)+x2f′(x)-2x<0,恒成立:
∴g(x)在(0,+∞)單調(diào)遞減,
由x2f(x)-4f(2)<x2-4,
∴x2f(x)-x2<4f(2)-4,
即g(x)<g(2)
即x>2;
當(dāng)x<0時(shí),函數(shù)是偶函數(shù),同理得:x<-2,
綜上可知:實(shí)數(shù)x的取值范圍為(-∞,-2)∪(2,+∞),
故選:A.

點(diǎn)評(píng) 主要根據(jù)已知構(gòu)造合適的函數(shù),函數(shù)求導(dǎo),并應(yīng)用導(dǎo)數(shù)法判斷函數(shù)的單調(diào)性,偶函數(shù)的性質(zhì),難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.方程$\sqrt{-{x}^{2}+4x-3}$=ax+a由兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍為[0,$\frac{\sqrt{2}}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知x>1,比較x3+6x與x2+6的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.某幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.5B.$\frac{16}{3}$C.7D.$\frac{17}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.某幾何體的三視圖如圖所示,圖中的四邊形都是邊長(zhǎng)為1的正方體,兩條虛線互相垂直,則該幾何體的體積是( 。
A.$\frac{2}{3}$B.$\frac{5}{6}$C.$1-\frac{π}{6}$D.$1-\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)p:x<4,q:1<x<4,則p是q成立的(  )
A.充要條件B.充分不必要條件
C.必要不充分條件D.既充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,Sn=2an-n(n∈N*).
(1)求證:數(shù)列{an+1}成等比數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)數(shù)列{an}中是否存在連續(xù)三項(xiàng)可以構(gòu)成等差數(shù)列?若存在,請(qǐng)求出一組適合條件的三項(xiàng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=\sqrt{3}+\sqrt{3}t\end{array}\right.$(t為參數(shù))以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,曲線C的方程為$sinθ-\sqrt{3}ρ{cos^2}θ=0$.
(Ⅰ)求曲線C的直角坐標(biāo)方程;
(Ⅱ)寫(xiě)出直線l與曲線C交點(diǎn)的一個(gè)極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知拋物線C:y2=8x的焦點(diǎn)為F,P為C的準(zhǔn)線上一點(diǎn),Q(在第一象限)是直線PF與C的一個(gè)交點(diǎn),若$\overrightarrow{PQ}=\sqrt{2}\overrightarrow{QF}$,則QF的長(zhǎng)為(  )
A.$6-4\sqrt{2}$B.$8-4\sqrt{2}$C.$8+4\sqrt{2}$D.$8±4\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案