9.若函數(shù)$f(x)=({1+\sqrt{3}tanx})cosx,0≤x≤\frac{π}{2}$,則f(x)的最大值為( 。
A.1B.2C.$\sqrt{3}+1$D.$\sqrt{3}+2$

分析 由題意,f(x)=cosx+$\sqrt{3}$sinx=2sin(x+$\frac{π}{6}$),即可求出函數(shù)的最大值.

解答 解:由題意,f(x)=cosx+$\sqrt{3}$sinx=2sin(x+$\frac{π}{6}$),
∴x=$\frac{π}{3}$時,函數(shù)的最大值為2.
故選B:.

點評 本題考查三角函數(shù)的性質(zhì),考查學生的計算能力,比較基礎(chǔ).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x-\frac{9}{4}(x>0)}\\{{3}^{x}(x≤0)}\end{array}\right.$,則f[f($\frac{1}{4}$)]的值是(  )
A.$\frac{1}{9}$B.9C.-$\frac{1}{9}$D.-9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.如圖,在四棱錐V-ABCD中,VD⊥平面ABCD,VD=DC=BC=2,AB=4,
AB∥CD,BC⊥CD.
(1)求證:BC⊥VC;
(2)求點A到平面VBC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.若sinθ+cosθ=$\frac{{\sqrt{5}}}{5}$,θ∈[0,π],則tanθ=-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知實數(shù)x,y滿足$\left\{{\begin{array}{l}{x-2y+1≥0}\\{|x|-y-1≤0}\end{array}}\right.$,則z=$\frac{2x+y+2}{x}$的取值范圍是(-∞,0]∪[$\frac{10}{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知f(x)=$\frac{π}{2}$+cosx,則f′($\frac{π}{2}$)=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知向量$\overrightarrow{a}$=(sinωx,2cosωx),$\overrightarrow$=(cosωx,-$\frac{2\sqrt{3}}{3}$cosωx)(ω>0),函數(shù)f(x)=$\overrightarrow{a}$•($\sqrt{3}\overrightarrow$+$\overrightarrow{a}$)-1,且函數(shù)f(x)的最小正周期為$\frac{π}{2}$.
(1)求函數(shù)f(x)的解析式及單調(diào)增區(qū)間;
(2)設(shè)△ABC的三邊為a、b、c.已知sinA,sinB,sinC成等比數(shù)列,若方程f(B)=k有兩個不同的實數(shù)解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=sin2xcos2x+sin22x-$\frac{1}{2}$.
(1)求函數(shù)f(x)的最小正周期及對稱中心;
(2)在△ABC中,角B為鈍角,角A、B、C的對邊分別為a、b、c,f($\frac{B}{4}$)=$\frac{\sqrt{2}}{2}$,且sinC=$\sqrt{2}$sinA,S△ABC=4,求c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.函數(shù)f(x)=sinxcosx+$\frac{\sqrt{3}}{2}$cos2x的最小正周期和振幅分別是π,1.

查看答案和解析>>

同步練習冊答案