分析 (1)先求得∠BAD=75°,可得∠ADB=60°,利用條件以及正弦定理求得AD的值.
(2)先求得BC、AB的值,可得△ABC為等腰三角形,可得AC的值,在△ACD中,由余弦定理求得CD的值.
解答 解:(1)如圖所示,在△ABD中,
∵∠BAD=∠BAC+∠DAC=30°+45°=75°,
∴∠ADB=60°,
由正弦定理可得,$\frac{AB}{sin∠ADB}=\frac{AD}{sin∠ABD}$,$AD=\frac{{\sqrt{3}sin45°}}{sin60°}=\sqrt{2}$.
(2)∵∠ABC=∠ABD+∠DBC=45°+75°=120°,∠BAC=∠BCA=30°,
∴$BC=AB=\sqrt{3}$,∴AC=3.
在△ACD中,由余弦定理得,CD2=AC2+AD2-2AC•ADcos∠DAC=5,
即$CD=\sqrt{5}$(海里)…(13分)
答:$AD=\sqrt{2}$,C,D間的距離為$\sqrt{5}$海里.
點(diǎn)評(píng) 本題主要考查正弦定理、余弦定理的應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p∧q | B. | ¬p | C. | p∧(¬q) | D. | (¬p)∧(¬q) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 36個(gè) | B. | 42個(gè) | C. | 48個(gè) | D. | 120個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=x2,x∈[0,1] | B. | $f(x)=x(\frac{1}{{{2^x}-1}}+\frac{1}{2})$ | ||
C. | $f(x)=\left\{\begin{array}{l}x+1,(x>0)\\ \\ x-1.(x<0)\end{array}\right.$ | D. | $f(x)=\frac{{{2^x}-1}}{{{2^x}+1}}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com