已知函數(shù)f(x)=x5+x3+x+8,若f(a)=2,則f(-a)=
 
考點:函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由f(a)=10得a5+a3+a=-6,再代入f(-a)進行求解.
解答: 解:∵f(x)=x5+x3+x+8,f(a)=2,∴a5+a3+a+8=2,
得a5+a3+a=-6
∴f(-a)=-a5-a3-a+8=-(a5+a3+a)+8=-(-6)+8=14,
故答案為:14.
點評:本題考查了利用函數(shù)的奇偶性和整體思想求值,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=f(x)的圖象經(jīng)過坐標(biāo)原點,其導(dǎo)函數(shù)為f′(x)=6x-2,數(shù)列{an}的前n項和為Sn,點(n,Sn)(n∈N*)均在函數(shù)y=f(x)的圖象上.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=
3
anan+1
,Tn
是數(shù)列{bn}的前n項和,求Tn的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列-
1
2
1
4
,-
1
8
,
1
16
,…的通項公式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)在定義域R上的導(dǎo)函數(shù)是f'(x),若f(x)=f(2-x),且當(dāng)x∈(-∞,1)時,(x-1)f'(x)<0,設(shè)a=f(0)、b=f(
2
)、c=f(log28),則(  )
A、a<b<c
B、a>b>c
C、a<c<b
D、c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)在[14,20]上連續(xù),且同時滿足f(14)•f(20)<0,f(14)•f(17)>0,則( 。
A、f(x)在[14,17]上有零點
B、f(x)在[17,20]上有零點
C、f(x)在[14,17]上無零點
D、f(x)在[17,20]上無零點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某科研所計劃利用宇宙飛船進行新產(chǎn)品搭載實驗,計劃搭載新產(chǎn)品甲、乙,要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品重量、搭載實驗費用和預(yù)計產(chǎn)生收益來決定具體安排,通過調(diào)查,有關(guān)數(shù)據(jù)如表:
產(chǎn)品A(件)產(chǎn)品B(件)
研制成本、搭載費用之和(萬元)2030計劃最大資金額300萬元
產(chǎn)品重量(千克)105最大搭載重量110千克
預(yù)計收益(萬元)12090
試問:如何安排這兩種產(chǎn)品的件數(shù)進行搭載,才能使總預(yù)計收益達到最大,最大收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=sin(x+
π
3
)(x∈[0,
13π
6
])
的圖象與直線y=m有且只有兩個交點,且交點的橫坐標(biāo)分別為x1,x2(x1<x2),那么x1+x2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,真命題是( 。
A、?x0∈R,e x0≤0
B、?x∈R,2x≠x2
C、a+b=0的充要條件是
a
b
=-1
D、a≠1,b≠1是ab≠1的充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax-a+1(a>0且a≠1),將函數(shù)f(x)的圖象向下平移1個單位,再向左平移a個單位后得到函數(shù)g(x),設(shè)函數(shù)g(x)的反函數(shù)為h(x),
(1)求函數(shù)h(x)的解析式;
(2)判斷并證明函數(shù)y=h(
x+1
x-1
)的奇偶性;
(3)判斷函數(shù)y=h(
x+1
x-1
)在區(qū)間(1,+∞)上的單調(diào)性,并用單調(diào)性的定義加以證明.

查看答案和解析>>

同步練習(xí)冊答案